
PREPRINT, ACCEPTED TO SPECIAL ISSUE IEEE TAC, TCAS-I 1

Bistable biological systems: a characterization
through local compact input-to-state stability

Madalena Chaves, Thomas Eissing, and Frank Allgöwer, Member, IEEE

Abstract—Many biological systems have the capacity to operate
in two distinct modes, in a stable manner. Typically, the system
can switch from one stable mode to the other in response to a
specific external input. Mathematically, these bistable systems are
usually described by models that exhibit (at least) two distinct
stable steady states. On the other hand, to capture biological
variability, it seems more natural to associate to each stable mode
of operation an appropriate invariant set in the state space rather
than a single fixed point. A general formulation is proposed in this
paper, which allows freedom in the form of kinetic interactions,
and is suitable for establishing conditions on the existence of
one or more disjoint forward-invariant sets for the given system.
Stability with respect to each set is studied in terms of a local
notion of input-to-state stability with respect to compact sets.
Two well known systems that exhibit bistability are analyzed in
this framework: the lac operon and an apoptosis network. For
the first example, the question of designing an input that drives
the system to switch between modes is also considered.

Index Terms—Bistability; Compact input-to-state stability;
Biological networks.

I. INTRODUCTION

B ISTABILITY is a recurrent motif in biology, and there
are many examples of systems which can operate, in

a stable manner, in two very distinct modes. For instance,
the well known lac operon in the bacteria Escherichia coli,
a group of genes which are repressed in the presence of
glucose but transcribed in the absence of glucose and presence
of lactose [1], [2]. Another striking example is the phage λ
virus, which may exist in either of two states. Under “normal”
conditions, this virus can exist in a dormant (lysogentic) state,
and survive indefinitely within its host, E. coli. However,
under “adverse” conditions, for example after irradiation with
ultra-violet light [3], the phage can switch to a reproducible
(lytic) mode, leading to bacterial lysis (that is, the bacteria
burst). Yet another example is the complex system of cross-
talking pathways that regulates the decision of cells to enter the
process of programmed cell death, also known as apoptosis,
as opposed to continuing normal development [4]–[6]. From
a failure in the pro- and anti-apoptotic signaling pathways
various diseases may result, including cancer (where damaged
cells that fail to undergo apoptosis, continue to reproduce).
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Bistable behavior has been experimentally detected at the
single cell level (for example, the lac operon in E. Coli [2] and
the cell cycle oscillator in Xenopus laevis [7]). These beautiful
experiments show that each individual cell can indeed only
exist in one of two distinct states, and upon stimulation with an
appropriate input, a clear jump-like transition is observed, from
one state to another. To understand how each bistable system
works, many mathematical models have been proposed, but a
common feature is the existence of an appropriate positive
feedback loop (see, for instance, [6], [8] for analysis of a
caspase cascade at the heart of apoptosis). A general method
for multistability in a large class of biological systems is
provided in [9], using the concept of monotone systems. On
the other hand, at the population level, a graded response to
increasing stimuli is typically observed [2], [10]. This means
that each cell has its own “threshold”, its own particular point
where it will jump from one steady state to the other. Since
this threshold varies from cell to cell, a population experiment
should reflect the fraction of cells in a given steady state for
each given stimulus concentration.
This introduces a fundamental issue of concern when mod-

eling and studying biological systems: the inherent variabil-
ity encountered among different “realizations” of the same
system. Various modeling techniques have been suggested
and used to deal with the problem of variability, and obtain
ever more realistic descriptions of the biological systems.
Just to cite some examples, among many others: stochastic
models [11], [12], discrete/logical models which provide more
qualitative descriptions [13]–[16], and more recently hybrid
models [17], and in particular piecewise linear models [18]–
[22]. The system under study, its complexity, and the knowl-
edge and experimental data available, often determine the
most suitable method for modeling a given system. In the
case of genetic regulatory networks, although exact forms
for the interactions are often not known, the presence (or
expression) of a given protein or mRNA is typically due to
the appropriate combination of presence or absence of another
group of species [23].
An alternative approach is proposed here, which provides

an intuitive bridge between continuous models and the class
of piecewise linear hybrid models. This approach is specially
attractive for the type of systems whose interactions can be
described as combinations of “activation” and “inhibition”
functions. These functions will be generally formulated in the
sense that, instead of a specific mathematical formula, they
are bounded within appropriate “tubes”. In this context, one
may expect a mathematical model for a bistable biological
system to exhibit two distinct, disjoint, forward-invariant sets
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Fig. 1. A simplified schematic view of the interactions between the NFκB
pathway and the apoptosis network (see Section IV and also [29]).

in its state space: each invariant set representing one stable
mode of operation. An invariant set, as opposed to a single
fixed point, captures variability or small disturbances in the
system’s trajectories while maintaining the same qualitative
behavior. The system is able to switch from one invariant set
to another only in response to an appropriate external input.
An ideal framework to analyze such mathematical systems,
and characterize their stability with respect to inputs, is the
notion of input-to-state stability (ISS) with respect to compact
sets [24]. This can be viewed as a generalization of the original
ISS concept [25], [26]. A powerful and extremely useful tool
for analysis of control systems, ISS has been adapted to
deal with positive systems [27], [28], and in the present case
will be adapted to a “local” property, and thus allow for co-
existence of two disjoint forward-invariant sets. The original
ISS notion is global and, for the zero-input case, ISS implies
global asymptotic stability (to the origin or, more generally,
the given compact set). The definition suggested here will
make use of a local region (one for each forward-invariant
set), containing the compact set, over which the input-to-
state stability estimates hold. The definitions of “activation”
and “inhibition” functions are introduced in Section II. The
local notion of ISS with respect to compact sets is then
given in Section III, together with a characterization through
ISS Lyapunov functions. These ideas are then illustrated with
the examples of an apoptosis network and the lac operon
(Sections IV, V, respectively), and results are compared and
discussed in Section VI.

II. A GENERAL FRAMEWORK

We will presently focus on biological networks consisting
only of activation or inhibition links, such as the network depi-
tect in Fig. 1 (see Section IV for a description of the system).
For these networks, the exact form of interactions is usually
not known, and various options can be used in mathematical
models. The interactions typically involve threshold concen-
trations, above (or below) which the activation or inhibition
of one species by another is not significant. Such functions
are often described mathematically by saturation functions
(e.g. Hill type), which involve estimating and choosing fixed
parameters that represent an average behaviour (for instance,
in a group of cells of the same type). Such functions will
not satisfactorily capture the variability, but rather an average
behavior. The first step in setting up a general framework,
is to associate to each activation (resp. inhibition) link an
activation (resp. inhibition) function that is defined inside a

Fig. 2. An activation function ν(x).

tube (see [29] and Fig. 2). The second step is to consider that
each of the variables is produced according to the overall result
of the several activation and inhibition links particular to that
node and, in addition, is freely degraded. The resulting model
will depict the principal interconnetions among the system’s
variables, but without specifying particular kinetic laws for
interactions.
Definition 2.1: Let N ∈ R+. A function ν : [0,∞) →

[0, N ] is an activation function if:
(i) ν is continuously differentiable;
(ii) 0 < x <∞ implies ν(x) > 0 and ν(0) = 0;
(iii) There exists a threshold value 0 < φ <∞ and constants

ε, ∆ ∈ (0, 1) such that

x ∈ [0,φ(1−∆)) ⇒ ν(x) ∈ [0, εN),
x ∈ (φ(1 + ∆),∞) ⇒ ν(x) ∈ (N(1− ε), N ].

Definition 2.2: Let M ∈ R+. A function µ : [0,∞) →
[0,M ] is an inhibition function if:
(i) µ is continuously differentiable;
(ii) 0 < x <∞ implies µ(x) > 0 and µ(0) = M ;
(iii) There exists a threshold value 0 < θ < ∞ and constants

ε, ∆ ∈ (0, 1) such that

x ∈ [0, θ(1−∆)) ⇒ µ(x) ∈ (M(1− ε),M ],
x ∈ (θ(1 + ∆),∞) ⇒ µ(x) ∈ [0, εM).

These definitions are more general than those given in [29],
as the restriction for the functions to be strictly monotone has
been lifted. Instead, an extra assumption is added, as point
(ii) in both Definitions 2.1, 2.2. This property means that
an activation function is zero (an inhibition function equals
its maximal value) if and only if x = 0. This property is
not unnatural, and will be useful (together with continuity)
in providing a strictly positive minimum value for a function
µ in any compact set with x > 0. Note that property (ii)
allows limx→∞ µ(x) = 0. Another difference regarding the
definitions given in [29] is the fact that the value ε (resp.,
∆) now represents a fraction of the maximal activity (resp.,
activity threshold).
In the networks depicted in Figs. 1 and 4, nodes inside the

dashed rectangle constitute the system’s variables, and nodes
outside the dashed rectangle form the system’s set of inputs.
The effect of an activating input on a given variable (link of
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the form →) will be represented as an additive term, and an
inhibitory input (link of the form &) will be represented as
a product with the other terms in the corresponding variable
dynamics. The dynamical system for the network in Fig. 1 can
then be written, using the notation x = [NFκB], y = [IκB],
w = [C8a ], z = [C3a], and u = [TNF]:

ẋ = −kxx + µ1(y) µ3(z)
ẏ = −kyy + ν1(x) ν2(z) µ5(u) (1)
ẇ = −kww + µ4(x) + ν3(u)
ż = −kzz + µ2(x)ν4(w).

The term µ1(y)µ3(z) should be interpreted as a total produc-
tion rate for NFκB, which depends only on how large the
concentrations of IκB and C3a are at each instant. Similar
interpretation holds for the other production terms. TNF stim-
ulation may be assumed constant, either zero or positive (see
Section IV).
Definitions 2.1 and 2.2 imply that there is a “tube” inside

which the functions must lie. Examples of such functions
include not only Hill and other sigmoidal shaped functions
(Fig. 2), but also hyperbolic functions, such as Michaelis-
Menten or Monod type kinetics. Numbers ε, ∆ can be found
to construct a tube around a hyperbolic function (see next
paragraph, n = 1); however, such a tube might not be sharp
enough for some applications. Observe that the limiting case
ε ≡ ∆ ≡ 0 reduces essentially to the piecewise linear
systems introduced first by Glass and Kauffman [18], and more
recently used to study gene regulatory networks in [19]–[22].
The advantage of such an approach is in its general for-

mulation: consider a batch of cells of the same type, to be
used in single cell experiments. A model could be generated
from experiments with a few cells as “calibration”, and then
used to extract new information from each of the single
cell experiments. If a specific Hill function is chosen say,
V x!/(k! + x!), then the new results will not be as accurate
as they could be, if each cell will have slightly different Ṽ , k̃,
and '̃. Defining general functions as those in Definitions 2.1
and 2.2, allows the same model to be used for all cells
in the batch, as intervals for parameters V , k, and ' can
be incorporated into µ and ν functions. To write a Hill or
Michaelis-Menten type function (' ≥ 1) as an activation
function, one may choose: N = V , φ = k, and numbers
ε, ∆ so that 1−ε

ε ≤ min{ 1
(1−∆)! , (1 + ∆)!}.

The next property is straightforward from the definitions:
Fact 1: A continuously differentiable function µ is an in-

hibition function with constants M , θ, ε, ∆, if and only if
ν = M − µ is an activation function with constants N = M ,
φ = θ and ε, ∆.
It is clear that property (iii) is equivalent in both cases since:
x ∈ [0, (1 − ∆)θ) implies µ(x) > M(1 − ε), which in turn
implies ν(x) = M − µ(x) < M − M(1 − ε) = εM . (The
converse implication is similar.) If properties (i) and (ii) of
Definition 2.2 hold for µ, then immediately (i) and (ii) of
Definition 2.1 hold for ν = M − µ, and conversely.
Before stating another simple property, recall some standard

functions (e.g., [26]), which will be used later. A function
γ : R≥0 → R≥0 is said to be of class K if it is continuous,

strictly increasing, and zero at the origin. It is of class K∞ if,
in addition, limr→∞ γ(r) =∞. A function β : R≥0×R≥0 →
R≥0 is said to be of class KL, if β(·, t) is a K∞ function for
each fixed t ≥ 0, and β(r, ·) is strictly decreasing and satisfies
limt→∞ β(r, t) = 0 for each fixed r.
Fact 2: Let ν be an activation function. Then there exists

a class K∞ function γ such that ν(x) ≤ γ(x) for all x ≥ 0.
To see this, let γ̃(r) = max{ν(x) : x ∈ [0, r]}. Then γ̃(0) =
ν(0) = 0. γ̃ is nondecreasing by construction and continuous
because ν is. Then, an appropriate K∞ function γ with γ(x) ≥
γ̃(x) ≥ ν(x) can be found.
For simplicity, throughout this paper it will be assumed that

the constants ε and ∆ are the same for all activation and
inhibition functions in the network (however, the results can
be easily extended to the case where ε and ∆ are distinct for
each activation or inhibition function).

III. INPUT-TO-STATE STABILITY WITH RESPECT TO
COMPACT SETS

As in example (1), consider the following model for genetic
networks:

ẋ = −Kdegx + F (x, u) (2)

where Kdeg is an n × n diagonal matrix, containing in its
ii-th entry, the degradation rate for species xi. The function
F (x, u) : Rn

≥0 × Rm
≥0 → Rn

≥0 is a sum of terms, each term
a product of activation or inhibition functions. Since exact
functions are not provided, fixed points cannot be computed.
But the objective here is to carry out an equivalent analysis, by
identifying forward invariant sets (as opposed to fixed points)
in the state space. The existence of forward invariant sets for a
system of the form (2), will depend on the relationships among
the various threshold and maximal rate constants. Using once
more the analogy with the batch of same type cells, suppose
that each cell has its own steady state point, which varies
from individual cell to cell. But all these steady state points
will belong to the same invariant set of system (2). Thus, even
if exhibiting slight variations, all cells can be expected to have
the same qualitative behavior, characterized by a system of the
form (2) and its forward invariant sets.
A very natural concept from control theory to help char-

acterize existence (and stability) of invariant sets, is that of
input-to-state stability (ISS) with respect to compact sets [24].
This can be viewed as a generalization of the original ISS
notion [25], in which case the compact set is simply the
origin {0}. The concept of ISS has revealed itself an extremely
powerful notion in many situations, for characterizing stability
of systems, robustness with respect to state, and output dis-
turbances, cascaded systems, and other applications [26], [30],
[31]. The definitions to be formulated next, adapt compact ISS
to a local property, in the sense that estimates are required
to hold only while the trajectories of the system remain
within some appropriate set. Similar notions have already been
introduced to deal with positive, biochemical networks (for
instance [27], [28]).
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A. Local notions of compact ISS
In the definitions to follow next, for simplicity consider a

system with inputs ẋ = f(x, u), evolving in a set X ⊂ Rn
≥0,

where f(·, u) is continuously differentiable for each fixed u,
and define an input to be a locally Lipschitz function w :
R≥0 → Rm

≥0. Let |u| denote the usual Euclidean norm for
matrices and define also:

‖u‖ = ess. sup .{|u(t)| : t ∈ [0,+∞)}.

In the next definition, let 0 < Tmax ≤ ∞ and assume that
Jx0,w = [0, Tmax) is the interval where the maximal solution
of a system ẋ = f(x, u), for an initial condtion x0 and input
w, is defined.
Definition 3.1: A set P is forward-invariant for the system

ẋ = f(x, u) if, for each initial state x(0) = x0 ∈ P , and each
input w(·), the corresponding maximal solution x(t, x0, w),
which is defined on an interval Jx0,w = [0, Tmax), satisfies
x(t, x0, w) ∈ P for all t ∈ Jx0,w. The system is P -forward
complete if P is a forward invariant set for the system and, in
addition, Jx0,w = [0,∞), for each x(0) = x0 ∈ P and each
input w(·).
Following [24], let Q be a nonempty compact set of Rn

≥0.
Then define the usual point-to-set distance:

|x|Q = inf{|x− q|, q ∈ Q}.

In our examples, as in many biological systems, the set X is a
product of intervals Πn

i=1 [0, ai], for finite ai, i = 1, . . . , n. The
compact sets to be considered will often touch the boundary
of X , for instance Q = {x ∈ X : 0 ≤ x1 ≤ εa1}, with
0 < ε < 1. In this context, we will still say that Q is contained
in the interior of X . More generally we define:

intXR := {x ∈ R : x ∈ int R or x ∈ ∂R ∩ ∂X} . (3)

Definition 3.2: Assume that the system ẋ = f(x, u), is X -
forward complete. Then the system is locally input-to-state
stable with respect to a compact set Q if there exists a set
R ⊂ X with Q ⊂ intXR, and functions β = βR of class KL
and ϕ = ϕR of class K∞ such that, for every initial condition
x0 ∈ R and each input w(·) :

|x(t, x0, w)|Q ≤ β(|x0|Q, t) + ϕ(‖w‖), (4)

for all t ≥ 0 such that x(s) ∈ R for all s ∈ [0, t].
If R = X then the system is globally input-to-state stable

with respect to the compact set Q.
Definition 3.3: A continuously differentiable function V :

Rn
≥0 → R≥0 is a local ISS Lyapunov function with respect to

a compact set Q for the system ẋ = f(x, u), if:
(i) there exist functions ν1, ν2 ∈ K∞, so that

ν1(|x|Q) ≤ V (x) ≤ ν2(|x|Q)

for all x ∈ Rn
≥0.

(ii) there exists a set R ⊂ X with Q ⊂ intXR, and functions
α = αR, γ = γR ∈ K∞ such that

∇V (x) f(x, u) ≤ −α(|x|Q) + γ(|u|)

for every x ∈ R.

If R = X , then the function V is a global ISS Lyapunov
function with respect to the compact set Q for the system.
The local condition means that the ISS estimate will remain

valid as long as the trajectory evolves within the given set R.
As in the case of the original definition of an ISS system,
the existence of an ISS-Lyapunov function with respect to
a compact set Q implies that the system is input-to-state
stable with respect to that compact set Q. The proof of this
result is very similar to the original one, and follows closely
the argument given in [26], hence we do not include it (see
also [27]).
Lemma 3.4: Consider an Rn

≥0- forward complete system
ẋ = f(x, u). Suppose that V is a local (resp., global) ISS
Lyapunov function with respect to the compact set Q ⊂ Rn

≥0.
Then, the system is locally (resp., globally) input-to-state
stable with respect to the compact set Q. !
If the system is globally ISS with respect to a compact set

Q, then this set is said to be 0-invariant for the system, that
is the solution of

ẋ = f(x, 0), x(0) = x0 ∈ Q

remains in Q for all t ≥ 0, that is, x(t, x0, 0) ∈ Q whenever
x0 ∈ Q. Furthermore, if a system is globally ISS with respect
to Q, then in the case u(t) ≡ 0, the trajectories globally
asymptotically converge to Q. It is not difficult to check that
the definition of local compact ISS also implies 0-invariance
of the set Q. One needs only to verify that, when u(t) ≡ 0 and
x0 ∈ Q, the trajectories do not leave the set R. To see this,
simply note that (4) together with u(t) ≡ 0 and x0 ∈ Q, in
fact imply |x(t, x0, w)|Q ≤ 0 for all times. Using Lemma 3.4
the following result holds.
Lemma 3.5: If there exists a local ISS Lyapunov function

with respect to the compact set Q for the system ẋ = f(x, u),
then Q is a 0-invariant set for the system.
The definition in local terms is useful when there exist two

(or more) disjoint 0-invariant sets for the system (as is the
case with bistable systems). In this case, global asymptotic
stability to either set (in the case u ≡ 0) clearly does not make
sense, but it is still meaningful to characterize the regions of
state space (the set R) from where it is possible to eventually
converge to one of the sets. In addition, if starting inside one
of the invariant sets, local ISS with respect to a compact set
quantifies the magnitude of disturbances allowed before the
system leaves that set.

B. ISS Lyapunov functions with respect to cubes
For systems of the form (2) and for compact sets which

are products of closed intervals, it is possible to use “piece-
wise” quadratic functions to systematically construct an ISS
Lyapunov function with respect to a given cube. Define the
scalar function:

ρ(r) =
{

1
2r2, r ≥ 0
0, r < 0 .

This function is continuously differentiable and satisfies:

r
dρ

dr
= r

√
2ρ(r) = 2 ρ(r). (5)
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Now consider a set of the form

Q = [xa
1 , xb

1]× · · ·× [xa
n, xb

n].

Then our candidate Lyapunov function will be:

V (x) =
1
2
|x|2Q =

n∑

i=1

ρ(xa
i − xi) + ρ(xi − xb

i ). (6)

This is the squared point-to-set distance to a cube-shaped
compact set, and hence one may set ν1 = ν2 = V (x) = 1

2 |x|
2
Q.

Using this V , and noticing that the function F (x, u) in (2)
is bounded (as a finite sum of products of activation and
inhibition functions), it is easy to prove the following result.
Lemma 3.6: Define F̄i = maxx,u Fi(x, u) and consider the

set

P =
[
0,

F̄1

k1

]
× · · ·×

[
0,

F̄n

kn

]
. (7)

Then system (2) is P -forward complete.
Proof: The function −Kdegx + F (x, u) is continuously dif-
ferentiable on Rn

≥0 for each fixed u, and locally integrable on
Rm
≥0 for each fixed x ∈ Rn

≥0. For each continuous input w, and
initial condition x0 ∈ P , let x(t, x0, w) denote the maximal
solution of the initial value problem ẋ(t) = −Kdegx(t) +
F (x(t), w(t)), x(0) = x0, and suppose it is defined on an
interval [0, Tmax). Consider now the distance function

V (x) =
1
2
|x|2P =

n∑

i=1

ρ

(
xi −

F̄i

ki

)
,

since the system is defined only for nonnegative coordinates.
Then (writing xi = (xi − F̄ /ki) + F̄ /ki)

∇V f(x, u) =
n∑

i=1

√

2ρ

(
xi −

F̄i

ki

) (
−ki(xi −

F̄i

ki
)
)

+
n∑

i=1

√

2ρ

(
xi −

F̄i

ki

)
(−F̄i + Fi(x, u))

≤
n∑

i=1

−ki2 ρ

(
xi −

F̄i

ki

)

≤ −2 min
i

ki |x|2P

because (by definition of F̄ ) −F̄i + Fi(x, u) ≤ 0 for all i
and all x, u. It is clear that V (x(t, x0, w)) is a nonincreasing
function so, for all t > 0,

|x(t, x0, w)|2P ≤ |x0|2P ,

implying that the trajectory remains bounded for all times,
and hence Tmax = ∞. By a comparison principle, it also
holds that: V (x(t, x0, w)) ≤ exp(−c|x(t, x0, w)|2P ) (where
c = 2 mini ki). Therefore, the trajectories of system (2) are
asymptotically convergent to the compact set P . Finally, if
the initial condition is x0 ∈ P , then |x(t, x0, w)|2P ≡ 0 for all
t, meaning that system (2) is indeed P -forward complete.
From now on, without loss of generality, we will consider

only trajectories of (2) evolving in P . For system (1) this set

becomes:

Pap =
[
0,

M1M3

kx

]
×

[
0,

N1N2M5

ky

]

×
[
0,

M4 + N3

kw

]
×

[
0,

M2N4

kz

]
.

IV. LIFE AND DEATH DECISION IN AN APOPTOSIS
NETWORK

The apoptosis network is responsible for programmed cell
death in response to certain stimuli. Apoptosis enables the
organisms to eliminate unwanted cells and thus prevent, for
instance, replication of damaged cells (see for example [4]).
Cancer, as well as other diseases, may develop if the apoptosis
network fails to respond in an appropriate manner. At the heart
of the apoptosis network is a family of proteins (caspases, each
existing in a pro-form and an active form), which are activated
in a cascade (for more references see [4] and also [6]). Caspase
3 (C3) is a prominent downstream member of this cascade,
and it is responsible for the cleavage (and destruction) of
various and critical proteins in the cell: thus high abundance of
active C3 (C3a) typically leads to cell death. Other pathways
interact with the apoptosis network, in particular the well
known Nuclear Factor κB (NFκB) pathway [4]. NFκB is
a transcription factor responsible for transcription of various
genes, including one for its own inhibitor (IκB), and another
for an inhibitor of C3a (IAP). Thus, the presence of NFκB (or,
more precisely, its transcription products) typically promotes
survival of the cell. While the NFκB pathway can be generally
considered an anti-apoptotic pathway, it is often activated in
parallel with the pro-apoptotic caspase cascade. A common
signal is stimulation of extrinsic death receptors, for example,
Tumor Necrosis Factor (TNF) activating its receptor TNFR1.
TNFR1 activation leads to deactivation of IκB. On the other
hand, TNF activates caspase 8, which in turn activates caspase
3, and NFκB also functions as an inhibitor of this step (through
the activity of FLIP, an inhibitor of caspase 8 activation and
IAPs, inhibitors of C3a) [4]. The interaction among pro-
and anti-apoptotic modules will influence and fine tune the
cellular decision to survive or undergo apoptosis [32]. Thus, in
model (1) a “living” response corresponds to low concentration
of C3a (and high concentration of NFκB), and conversely an
“apoptotic” response corresponds to high concentration of C3a
(and low concentration of NFκB).
Next we will establish conditions on the degradation and

production rates, that guarantee existence of both the “living”
(set L, Proposition 4.1) and “apoptotic” (set A, Proposi-
tion 4.2) responses, or only one of them (Propositions 4.3
and 4.4). The sets L and A are both contained in the larger
set Pap (Fig. 3). Note that conditions (L1)-(L2) and (A1)-
(A3) can indeed be simultaneously satisfied (see more details
below). These sets are disjoint if M1M3ε < m1M3(1 − ε).
This is guaranteed, for instance, for all ε < m1/(m1 + M1)
and ε +

√
ε < 1.

As a remark, we would like to point out that the sets L and
A (or L∗ and A∗) are not necessarily unique, nor the largest
invariant sets with the “living” and “apoptotic” qualitative
properties. In fact, bistable behavior could be established by
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Fig. 3. The “living” (L) and “apoptosis” (A) 0-invariant sets, projected into
the plane x = [NFκB], z = [C3a]. Also shown (shaded) is the local set R
for the “living set”.

finding any other suitable pair of disjoint 0-invariant compact
sets, say L̃ and Ã, with the properties “high x / low w”
and “low x / high w”, under different assumptions on the
parameters of the network. The goal here is to show that
the network has the capacity for bistability, by identifying
conditions for which at least one pair of sets L, A co-exist. Or,
alternatively, conditions on the parameters for which bistability
is lost and only one of the sets is invariant.
Recall that system (1) is Pap-forward complete

(Lemma 3.6). Define

m1 = min
{

µ1(y) : y ∈
[
0,

N1N2M5

ky

]}
, (8)

which is a stricly positive constant, because µ1 is continuous,
and by property (ii) of Definition 2.2. To simplify notation, let
ξ = (x, y, w, z)′, and let ξ̇ = f(ξ, u) denote system (1).
Proposition 4.1: Assume that (L1) εM2N4

kz
< θ3(1 − ∆),

and (L2) m1M3(1−ε)
kx

> max{θ2, θ4}(1+∆). Then system (1)
is locally ISS with respect to the compact set:

L =
[
m1M3(1− ε)

kx
,
M1M3

kx

]
×

[
0,

N1N2M5

ky

]

×
[
0,

εM4

kw

]
×

[
0,

εM2N4

kz

]
.

Proof: By Lemma 3.4, it is enough to show that there exists
a local ISS Lyapunov function with respect to L. We will next
construct such a function, following (6). Set

xa =
m1M3(1− ε)

kx
, xb =

M1M3

kx
,

ya = 0, yb =
N1N2M5

ky
,

wa = 0, wb =
εM4

kw
, za = 0, zb =

εM2N4

kz
.

Since we only consider trajectories evolving in the set Pap, it
always holds that y < yb, which implies ρ(y − yb) ≡ 0. In
addition, ρ(ya−y) = ρ(−y) ≡ 0. Therefore, the terms on y to
be included in the Lyapunov function always vanish. Similar

arguments show that also ρ(x−xb), ρ(wa−w) and ρ(za−z)
identically vanish in the state space Pap. Therefore consider
the function:

V (ξ) =
1
2
|ξ|2L = ρ (xa − x) + ρ

(
w − wb

)
+ ρ

(
z − zb

)
.

Now choose a number δ ∈ (0, 1) such that

(1 + δ)
εM2N4

kz
< θ3(1−∆) and

δ
m1M3(1− ε)

kx
> max{θ2, θ4}(1 + ∆)

(such δ exists, since (L1)-(L2) are strict inequalities), and
consider the following set which contains L in its interior:

R = R1 ∪R2,

R1 =
{
ξ ∈ Pap : w ≤ wb and (xa ≤ x ≤ xb or z ≤ zb)

}

R2 =
{
ξ ∈ Pap : δxa ≤ x ≤ xb and z ≤ (1 + δ)zb

}

(see also Fig. 3). Then

∇V f(ξ, u) = −
√

2ρ (xa − x)(−kxx + µ1(y)µ3(z))

+
√

2ρ (w − wb)(−kww + µ4(x))

+
√

2ρ (z − zb)(−kzz + µ2(x)ν4(w))

+ν3(u)
√

2ρ (w − wb).

Noting that:

−kxx + µ1(y)µ3(z) = −kx(x− xa)− kxxa + µ1(y)µ3(z)

and that

−
√

2ρ (xa − x)(−kx(x− xa)) = −2kxρ (xa − x) ,

and similar expressions for the terms in w and z, one can
write:

∇V f(ξ, u)
≤ −2kx ρ (xa − x)− 2kw ρ

(
w − wb

)
− 2kz ρ

(
z − zb

)

+gx(ξ) + gw(ξ) + gz(ξ) + ν3(u)
√

2ρ (w − wb),

where

gx(ξ) = −
√

2ρ (xa − x)(−kxxa + µ1(y)µ3(z)) (9)

gw(ξ) =
√

2ρ (w − wb)(−kwwb + µ4(x)) (10)

gz(ξ) =
√

2ρ (z − zb)(−kzz
b + µ2(x)ν4(w)). (11)

We will next show that property (ii) of Definition 3.3 holds
for the set R. To do this, we only need to show that gx(ξ) +
gw(ξ) + gz(ξ) ≤ 0 for all ξ ∈ R. Choose first any point
ξ ∈ R1. The inequality w ≤ wb implies ρ(w−wb) = 0 and the
term (10) is zero. Suppose first that xa ≤ x ≤ xb. Then ρ(xa−
x) = 0 and the term (9) is also zero. By assumption (L2)
x > θ2(1 + ∆), which implies µ2(x) < εM2 (by definition
of an inhibition function), and so −kzzb + µ2(x)ν4(w) <
−kz(zb−εM2N4/kz) = 0. Thus, the term (11) is nonpositive.
Suppose now that 0 ≤ z ≤ zb. Then ρ(z − zb) = 0 and
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hence (11) is zero. By assumption (L1), z < θ3(1−∆), which
implies µ3(z) > M3(1− ε) (by definition of µ3). Thus

kxxa − µ1(y)µ3(z) < kx

(
xa − 1

kx
m1M3(1− ε)

)
= 0,

and so the term (9) is nonpositive. Therefore, for all points in
R1, the terms (9), (10) and (11), are majorated by zero.
Choose next any point ξ ∈ R2. By definition of δ we

have: x ≥ xa > max{θ2, θ4}(1 + ∆), which implies
(condition (L2)) both µ2(x) < εM2 and µ4(x) < εM4.
Hence −kzzb + µ2(x)ν4(w) < −kzzb + εM2N4 = 0 and
−kwwb + µ4(x) < −kwwb + εM4 = 0, and both terms (10)
and (11) are nonpositive. Finally, z ≤ (1 + δ)zb implies (by
assumption (L1)) µ3(z) > M3(1− ε). And this again implies
that term (9) is nonpositive. Using Fact 2 to get ν3(u) ≤ γ3(u)
and letting c3 = maxPap

√
2ρ (w − wb) we have, for all

ξ ∈ R,

∇V f(ξ, u) ≤ −2kxρ (xa − x)− 2kwρ
(
w − wb

)

−2kzρ
(
z − zb

)
+ c3 γ3(u)

≤ −2 min{kx, kw, kz}|ξ|2L + γ(u),

where γ(r) = c3γ3(r) and c3 = (M4(1− ε) + N3)/kw.
Proposition 4.2: Assume: (A1) M2N4(1−ε)2

kz
> θ3(1 + ∆),

(A2) M1M3ε
kx

< min{θ2, θ4}(1 − ∆), and (A3) M4(1−ε)
kw

>
φ4(1 + ∆). Then system (1) is locally ISS with respect to the
compact set:

A =
[
0,

M1M3ε

kx

]
×

[
0,

N1N2M5

ky

]

× M4

kw
[1− ε, 1]× M2N4

kz

[
(1− ε)2, 1

]
.

Proof: By Lemma 3.4, it is enough to show that there exists
a local ISS Lyapunov function with respect to A. We will next
construct such a function, following (6). Define

xa = 0, xb =
M1M3ε

kx
, ya = 0, yb =

N1N2M5

ky
,

wa =
M4(1− ε)

kw
, wb =

M4

kw
,

za =
M2N4(1− ε)2

kz
, zb =

M2N4

kz
.

Since we only consider trajectories evolving in the set Pap, it
always holds that y < yb, which implies ρ(y − yb) ≡ 0. In
addition, ρ(ya−y) = ρ(−y) ≡ 0. Therefore, the terms on y to
be included in the Lyapunov function always vanish. Similar
arguments show that also ρ(xa − x) and ρ(z − zb) vanish in
Pap. Therefore consider the function 1

2 |ξ|
2
A :

V (ξ) = ρ
(
x− xb

)
+ ρ (wa − w) + ρ

(
w − wb

)
+ ρ (za − z) .

Now choose a number δ ∈ (0, 1) such that

δ
M2N4(1− ε)2

kz
> θ3(1 + ∆),

(1 + δ)
M1M3(1− ε)

kx
< max{θ2, θ4}(1−∆)

and δ
M4(1− ε)

kw
> φ4(1 + ∆)

(such δ exists, since (A1)-(A3) are strict inequalities), and the
following large set that strictly contains A:

R = R1 ∪R2,

with

R1 = {ξ ∈ Pap : w ≥ wa and
(
0 ≤ x ≤ xb or za ≤ z ≤ zb

)}

and

R2 = {ξ ∈ Pap : 0 ≤ x ≤ (1 + δ)xb and
δwa ≤ w and δza ≤ z ≤ zb

}
.

Then

∇V f(ξ, u) =
√

2ρ (x− xb)(−kxx + µ1(y)µ3(z))

−
√

2ρ (wa − w)(−kww + µ4(x))

+
√

2ρ (w − wb)(−kww + µ4(x))

−
√

2ρ (za − z)(−kzz + µ2(x)ν4(w))

+ν3(u)
(
−

√
2ρ(wa − w) +

√
2ρ(w − wb)

)
.

Simplifying as in the proof of Proposition 4.1:

∇V f(ξ, u) ≤ −2 min{kx, kw, kz}|ξ|2A
+gx,b(ξ) + gw,a(ξ) + gw,b(ξ) + gz,b(ξ)
+c3 ν3(u),

where c3 = maxPap

{√
2ρ(wa − w) +

√
2ρ(w − wb)

}
and

gx,b(ξ) =
√

2ρ (x− xb)(−kxxb + µ1(y)µ3(z)) (12)

gw,a(ξ) = −
√

2ρ (wa − w)(−kwwa + µ4(x)) (13)

gw,b(ξ) =
√

2ρ (w − wb)(−kwwb + µ4(x)) (14)

gz,a(ξ) = −
√

2ρ (za − z)(−kzz
a + µ2(x)ν4(w))(15)

We will next show that V satisfies property (ii) of Defini-
tion 3.3 for all ξ ∈ R. We verify this only for ξ ∈ R2, since
the verification for ξ ∈ R1 is analogous. Assume that ξ ∈ R2

and recall the definition of δ. Then z > θ3(1 + ∆) implies
µ3(z) < εM3. Hence −kxxb + µ1(y)µ3(z)) < −kxxb +
M1M3ε = 0 and gx,b ≤ 0. Next, note that w > φ4(1 + ∆)
implies ν4(w) > N4(1 − ε). And x ≤ min{θ2, θ4}(1 − ∆)
implies µ2(x) > M2(1 − ε) and µ4(x) > M4(1 − ε). Then
−kzza+µ2(x)ν4(w) > −kzza+(1−ε)2M2N4 = 0, implying
that gz,a ≤ 0. Also−kwwa+µ4(x) > −kwwa+M4(1−ε) > 0
implying that gw,a ≤ 0. Finally, note that −kwwb + µ4(x) ≤
−kwwb + M4 = 0, so gw,b ≤ 0.
We conclude that, for all ξ ∈ R, the terms (12), (13), (14),

and (15) can all be majorated by zero in the expression
∇V f(ξ, u). Using Fact 2 obtain ν3(u) ≤ γ3(u), one can say
that, for all ξ ∈ R,

∇V f(ξ, u)) ≤ −2 min{kx, kw, kz}|ξ|2A + γ(u),

where γ(r) = c3γ3(r), with c3 = 2((1− ε)M4 + N3/kw).
The next two Propositions provide stricter conditions, which

guarantee that only one of the two possible responses may
ultimately happen.
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Proposition 4.3: Assume: (L1’) M2N4
kz

≤ θ3(1−∆). Then
system (1) is globally ISS with respect to the compact set L∗:

L∗ =
[
m1M3(1− ε)

kx
,
M1M3

kx

]
×

[
0,

N1N2M5

ky

]

×
[
0,

M4

kw

]
×

[
0,

M2N4

kz

]
.

Proof: Define

xa =
m1M3(1− ε)

kx
, xb =

M1M3

kx
,

ya = 0, yb =
N1N2M5

ky
,

wa = 0, wb =
M4

kw
, za = 0, zb =

M2N4

kz
.

As in the proof of Proposition 4.1, consider the function

V (ξ) =
1
2
|ξ|2L∗ = ρ (xa − x) + ρ

(
w − wb

)
+ ρ

(
z − zb

)
.

We will show that, under condition (L1’), this function satisfies
Definition 3.3, with R = Pap, and so is indeed a global
Lyapunov function with respect to the compact set L∗. (Recall
that only trajectories evolving on Pap are considered.) By
definition µ2(x) ≤M2 for all x and ν4(w) ≤ N4 for all w, so
the term (11) is always nonpositive. Similarly, µ4(x) ≤ M4

for all x implies that the term (10) is always nonpositive.
By assumption (L1’), z ≤ M2N4/kz ≤ θ3(1 − ∆), so
that (using (8) and property (iii) of Definition 2.2) −kxxa +
µ1(y)µ3(z) ≥ −kxxa + m1M3(1 − ε) = 0. It follows that
term (9) is always nonpositive. Therefore, for all ξ ∈ Pap,

∇V f(ξ, u) ≤ −2kxρ (xa − x)− 2kwρ
(
w − wb

)

−2kzρ
(
z − zb

)
+ c3 γ3(u)

≤ −2 min{kx, kw, kz}|ξ|2L∗ + γ(u),

where c3 = maxPap

√
2ρ(w − w2) = N3/kw and γ(r) =

c3γ3(r). We conclude that, under assumption (L1’), V is a
global ISS Lyapunov function with respect to the compact set
L∗. By Lemma 3.4, system (1) is globally ISS with respect to
the same compact set, as we wanted to show.
A very similar proof shows that under some other condi-

tions, the apoptosis set will be an attractor for the system.
Proposition 4.4: Assume: (A2’) M1M3

kx
≤ min{θ2, θ4}(1−

∆). (A3’) M4
kw

> φ4(1 + ∆). Then system (1) is globally ISS
with respect to the compact set A∗.

A∗ =
[
0,

M1M3

kx

]
×

[
0,

N1N2M5

ky

]

× M4

kw
[1− ε, 1]× M2N4

kz

[
(1− ε)2, 1

]
.

!
The network depicted in Fig. 1 is capable of bistable behavior,
when the conditions (L1), (L2) and (A1)-(A3) are simultane-
ously satisfied. These can be rewritten as:

1 + ∆
1− ε

<
m1M3

kx min{θ2, θ4}
<

1−∆
ε

,

1 + ∆
(1− ε)2

<
M2N4

kzθ3
<

1−∆
ε

,
1 + ∆
1− ε

<
M4

φ4kw
.

Fig. 4. A simplified lac operon regulatory network (similar to the model
used in [2]), with two inputs: external lactose and glucose.

Provided that

ε +
√

ε < 1 and ∆ <
(1− ε)2 − ε

(1− ε)2 + ε
, (16)

many choices of parameters will satisfy these four conditions.
Bistability will obtain from a balance between the maximal
expression levels of NFκB and C3a, and their mutual inhibi-
tion thresholds (see [29]). In the bistable region of parameters,
either L or A can be reached depending on the initial condi-
tions and input. Our results also show that, under alternative
conditions, the network of Fig. 1 can exhibit only monostable
behavior. Indeed, if condition (L1’) is satisfied, then any
trajectory of system (1) (corresponding to a zero input, or
after TNF stimulus is turned off) will asymptotically converge
to the compact set L∗ (Proposition 4.3). This means that the
cell will not go to apoptosis. In a similar manner, conditions
(A2’)-(A3’) guarantee that any trajectory will asymptotically
converge to A∗ (Proposition 4.4), that is, C3a will remain at
high levels, and the cell will eventually die.

V. THE lac OPERON
An operon is a group of genes which are adjacent to

one another in the chromosome, and are transcribed into a
unique mRNA molecule. In E. coli, the lac operon genes code
for three proteins (β-galactosidase or LacZ, lactose permease
or LacY, and β-galactoside transacetylase or LacA) that are
required for the transport of lactose into the cell and its
subsequent breakdown. The lac operon has been a widely
studied system, since Jacob and Monod [1] first proposed a
model and analyzed this regulatory mechanism. E. coli will
preferably use glucose as a source of carbon but will also
use lactose, if glucose is not available. Binding of the lac
repressor protein (LacI) to the operator site of the lac operon,
prevents transcription of the lac genes. The presence of lactose
(or, more precisely, some of its derivatives) in the interior
of the cell, contributes to the inhibition of the protein LacI,
thus de-repressing the operon and allowing transcription to be
initiated. In the absence of glucose, the cyclic AMP receptor
protein (CRP) is activated, and strongly promotes transcription
of the three lac operon genes, lacZ, lacY, and lacA. The
protein LacY facilitates the uptake of lactose from the exterior
to the interior of the cell, while the enzyme β-galactosidase
is responsible for lactose breakdown. Thus, the absence of
glucose triggers a positive feedback cycle, which drives the
cell to increase its lactose uptake and the corresponding
metabolism. Here again there is a system exhibiting bistability:
the lac operon is repressed in the presence of glucose, but
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transcribed in the absence of glucose and presence of lactose.
In [2], this regulatory system and its response to glucose
and a lactose analog was explored: there are two inputs to
the system. A schematic view of the system is shown in
Fig. 4, where “lactose” stands for intracellular lactose. Letting
x = [lactose], y = [LacY], w = [LacI], z = [CRP],
u1 = [extracellular lactose] and u2 = [glucose], a model for
the system depicted in Fig. 4 is:

ẋ = −kxx + ν1(y) + ν4(u1)
ẏ = −kyy + µ1(w)ν2(z) (17)
ẇ = −kww + µ2(x)
ż = −kzz + µ3(u2)

To simplify notation, let ξ = (x, y, w, z)′ and let ξ̇ = f(ξ, u)
denote system (17). By Lemma 3.6, system (17) is Plac-
forward complete. where:

Plac =
[
0,

N1 + N4

kx

]
×

[
0,

M1N2

ky

]
×

[
0,

M2

kw

]
×

[
0,

M3

kz

]
.

As in the apoptosis example, conditions can be given that
guarantee the capacity for bistable behavior. It is convenient
to rewrite the equation for z, using Fact 1:

ż = −kzz + M3 + (µ3(u)−M3)
= −kzz + M3 − ν3(u), (18)

where N3 = M3. In Proposition 5.1 below, the set Llac

represents the response of the lac operon in the presence of
glucose: LacI (w) represses transcription of the lac genes, and
only a residual concentration of lactose (x) is present inside
the cell.
Proposition 5.1: Assume that (L1) εM1N2

ky
< φ1(1 − ∆),

(L2) M2(1−ε)
kw

> θ1(1 + ∆), and (L3) εN1
kx

< θ2(1−∆). Then
system (17) is locally ISS with respect to the compact set:

Llac =
[
0,

εN1

kx

]
×

[
0,

εM1N2

ky

]
× M2

kw
[1− ε, 1]×

[
0,

M3

kz

]
.

Proof: By Lemma 3.4, it is enough to show that there exists
a local ISS Lyapunov function with respect to Llac. Define

xa = 0, xb =
εN1

kx
, ya = 0, yb =

εM1N2

ky
,

wa =
M2(1− ε)

kw
, wb =

M2

kw
.

Following (6), consider the function:

V (ξ) =
1
2
|ξ|2Llac

= ρ
(
x− xb

)
+ ρ

(
y − yb

)
+ ρ (wa − w) .

This function satisfies property (i) of Definition 3.3, and we
will show that it also satisfies property (ii). Find δ ∈ (0, 1) so
that:

(1 + δ)
εM1N2

ky
< φ1(1−∆),

δ
M2(1− ε)

kw
> θ1(1 + ∆), (1 + δ)

εN1

kx
< θ2(1−∆)

(such a δ exists, since (L1)-(L3) are strict inequalities), and
define the following set :

R = {ξ ∈ Plac : x ≤ (1 + δ)xb, y ≤ (1 + δ)yb, δwa ≤ w}.

This set R clearly contains Llac in its interior (in the sense
defined by (3)). Then

∇V f(ξ, u) =
√

2ρ (x− xb)(−kxx + ν1(y))

+
√

2ρ (y − yb)(−kyy + µ1(w)ν2(z))

−
√

2ρ (wa − w)(−kww + µ2(x))

+ν4(u1)
√

2ρ (x− xb).

Noticing that −kxx + ν1(y) = −kx(x− xb)− kxxb + ν1(y),
and that

√
2ρ(x− xb)(x−xb) = 2kxρ(x−xb), the expression

∇V f(ξ, u) can be rewritten as

∇V f(ξ, u) = −2kx ρ
(
x− xb

)
− 2ky ρ

(
y − yb

)

−2kw ρ (wa − w) + gx,b + gy,b + gw,a

+ν4(u1)
√

2ρ (x− xb),

where

gx,b =
√

2ρ (x− xb)(−kxxb + ν1(y)) (19)

gy,b =
√

2ρ (y − yb)(−kyyb + µ1(w)ν2(z)) (20)

gw,a = −
√

2ρ (wa − w)(−kwwa + µ2(x)). (21)

Now, let ξ ∈ R. Recall the definition of δ. Then y < φ1(1−
∆) implies (definition of activation function) ν1(y) < εN1,
and hence gx,b ≤ 0. The fact that w > θ1(1 + ∆) implies
µ1(w) < εM1 (by definition of an inhibition function), and so
−kyyb+µ1(w)ν2(z) < −ky(yb−εM1N2/ky) = 0, and gy,b ≤
0. Since x < θ2(1 −∆) it follows that µ2(x) > M2(1 − ε),
and −kwwa + µ2(x) > −kwwa + M2(1 − ε) = 0, so also
gw,a ≤ 0. Thus, the terms (19)-(21) are nonpositive. For the
input term, use Fact 2 to obtain a K∞ function γ4(r) ≥ ν4(r).
In conclusion, for all points of R one can write:

∇V f(ξ, u) ≤ −2 min{kx, ky, kw}|ξ|2Llac
+ γ(|u|),

where γ(r) = (N1(1− ε)+N4)γ4(r)/kx is a K∞ function.
In the next Proposition, the set Alac represents the state of

the operon in the absence of glucose and presence of external
lactose. In this mode, both internal lactose and the Lac proteins
are present, while the repressor LacI is at a low level.
Proposition 5.2: Assume: (A1) M1N2(1−ε)2

ky
> φ1(1 + ∆),

(A2) εM2
kw

< θ1(1−∆), (A3) N1(1−ε)
kx

> θ2(1+∆), and (A4)
M3(1−ε)

kz
> φ2(1 + ∆). Then system (17) is locally ISS with

respect to the compact set:

Alac =
N1

kx
[1− ε, 1]× M1N2

ky

[
(1− ε)2, 1

]

×
[
0,

εM2

kw

]
× M3

kz
[1− ε, 1] .

Proof: The argument is very similar to that used in Propo-
sition 5.1. Following (6), consider the function 1

2 |ξ|
2
Alac

:

V (ξ) = ρ (xa − x) + ρ
(
x− xb

)
+ ρ (ya − y)

+ ρ
(
w − wb

)
+ ρ (za − z) .
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This function satisfies property (i) of Definition 3.3, and
we will show that it also satisfies property (ii). To simplify
notation, let ξ = (x, y, w, z)′ and define

xa =
N1(1− ε)

kx
, xb =

N1

kx
,

ya =
M1N2(1− ε)2

ky
, yb =

M1N2

ky
,

wa = 0, wb =
M2ε

kw
, za =

M3(1− ε)
kz

, zb =
M3

kz
.

Find δ ∈ (0, 1) so that:

δ
(1− ε)2M1N2

ky
> φ1(1−∆),

(1 + δ)
M2ε

kw
< θ1(1 + ∆), δ

(1− ε)N1

kx
> θ2(1−∆),

δ
M3(1− ε)

kz
> φ2(1 + ∆),

and define the following set:

R = {ξ ∈ Plac : δxa ≤ x, δya ≤ y,

w ≤ (1 + δ)wb, δza ≤ z}. (22)

This set R clearly contains Alac in its interior (in the sense
defined by (3)). Then computing and simplifying ∇V f(ξ, u):

∇V f(ξ, u) = −2kx ρ (xa − x)− 2kx ρ
(
x− xb

)

−2ky ρ (ya − y)− 2kw ρ
(
w − wb

)

−2kz ρ (za − z)
+gx,a + gx,b + gy,a + gw,b + gz,a

+ν4(u1)
(√

2ρ (xa − x) +
√

2ρ (x− xb)
)

+ν3(u2)
√

2ρ (za − z)

where

gx,a = −
√

2ρ (xa − x)(−kxxa + ν1(y)) (23)

gx,b =
√

2ρ (x− xb)(−kxxb + ν1(y)) (24)

gy,a = −
√

2ρ (ya − y)(−kyya + µ1(w)ν2(z)) (25)

gw,b =
√

2ρ (w − wb)(−kwwb + µ2(x)) (26)

gz,a = −
√

2ρ (za − z)(−kzz
a + M3). (27)

Now, let ξ ∈ R. Recall the definition of δ. Note first that
−kzza + M3 > 0, and so gz,a < 0. Then y > φ1(1 + ∆)
implies ν1(y) > (1 − ε)N1, and hence −kxxa + ν1(y) >
−kxxa + N1(1 − ε) = 0, so that gx,a ≤ 0. Note also that
−kxxb + ν1(y) ≤ −kxxb + N1 = 0, so that gx,b ≤ 0.
The fact that x > θ2(1 + ∆) implies that gw,b ≤ 0. Now
note that w < θ1(1 − ∆) implies µ1(w) > (1 − ε)M1

and z > φ2(1 + ∆) implies ν2(z) > (1 − ε)N2. Thus
−kyya + µ1(w)ν2(z) > −kyya + M1N2(1 − ε)2 = 0 and
gy,a ≤ 0. Thus, the terms (23)-(27) are nonpositive. For the
input term, use Fact 2 to obtain a K∞ function γi(r) ≥ νi(r),
i = 3, 4. In conclusion, for all points of R one can write:

∇V f(ξ, u) ≤ −2 min{kx, ky, kw, kz}|ξ|2Alac
+ γ(|u|),

where we used ui ≤ |u| =
√

u2
1 + u2

2 for i = 1, 2, and γ(r) =
M3(1 − ε)γ3(r)/kz + (N1(1 − ε) + N4)γ4(r)/kx is a K∞
function.
More restrictive conditions can be given, for a monostable

system. The next Proposition describes conditions under which
the system is prevented from expressing high levels of the Lac
proteins (and consequently cannot increase its lactose levels),
whether or not glucose is available.
Proposition 5.3: Assume: (L1’) M1N2

ky
≤ φ1(1 − ∆) and

(L2’) M2
kw
≥ θ1(1+∆). Then system (17) is globally ISS with

respect to the compact set:

Llac,∗ =
[
0,

εN1

kx

]
×

[
0,

εM1N2

ky

]
×

[
0,

M2

kw

]
×

[
0,

M3

kz

]
.

Proof: Set

xa = 0, xb =
εN1

kx
, ya = 0, yb =

εM1N2

ky
.

Consider the function:

V (ξ) =
1
2
|ξ|2Llac,∗

= ρ
(
x− xb

)
+ ρ

(
y − yb

)
.

It is easy to see that Lemma 3.4 can be applied with R = Plac.
Indeed, note that

∇V f(ξ, u)

≤ −2kx ρ
(
x− xb

)
+

√
2ρ (x− xb)(−kxxb + ν1(y))

−2ky ρ
(
y − yb

)
+

√
2ρ (y − yb)(−kyyb + N2µ1(w))

+ν4(u1)
√

2ρ (x− xb).

Assumption (L1’) (and recalling the definition of an activation
function ν) implies that −kxxb + ν1(y) ≤ −kxxb + εN1 = 0.
Assumption (L2’) implies that −kyyb +N2µ1(w) ≤ −kyyb +
εN2M1 = 0. Therefore, using Fact 2, one can find a K∞
function γ such that

∇V f(ξ, u) ≤ −2 min{kx, ky} |ξ|2Llac,∗
+ γ(|u|)

and Property (ii) of Lemma 3.4 is satisfied.
A similar argument shows that, under alternative condi-

tions, the Lac proteins will always be expressed and lactose
metabolism “switched on”, independently of glucose concen-
tration. Not surprisingly, the conditions are opposite to those
given in Proposition 5.3.
Proposition 5.4: Assume: (A1’) M1N2

ky
≥ φ1(1+∆), (A2’)

M2
kw
≤ θ1(1−∆), and Then system (17) is globally ISS with

respect to the compact set:

Alac,∗ =
N1

kx
[1− ε, 1]× M1N2

ky
[1− ε, 1]

×
[
0,

M2

kw

]
×

[
0,

M3

kz

]
.

!
Just as in the example of the apoptosis network, the lac

operon system clearly has the capacity for bistable response.
This happens when the conditions from Propositions 5.1
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and 5.2 are simultaneously satisfied. Putting conditions (L1)-
(L3) and (A1)-(A4) together, one has:

N1

kxθ2
,

M2

kwθ1
∈

(
1 + ∆
1− ε

,
1−∆

ε

)

M1N2

kyφ1
∈

(
1 + ∆

(1− ε)2
,
1−∆

ε

)
(28)

M3

kzφ2
∈

(
1 + ∆
1− ε

,∞
)

.

Note that assumption (A4) (condition on kz) simply reflects
the fact that the input function µ3 should have a sufficiently
high maximal production rate: for low levels of glucose, the
protein CRP should become activated. It is necessary that ε <
1/2 for Llac and Alac to be disjoint sets. In addition, both ε
and ∆ should satisfy the condition (16) (as for the apoptosis
network).
If glucose is available and µ3(u) ≈ 0, then the lac operon

activator (CRP) is not activated. The system will be evolving in
the set Llac. Suppose now that glucose is all used up: then the
activator CPR enables and amplifies transcription of the operon
genes. A nonzero input of extracellular lactose, together with
the positive feedback loop, will repress LacI and induce
sucessful transcription of the lac operon. The system will
eventually be driven to the set Alac. (see Section V-B below).
The conditions listed in Propositions 5.3 or 5.4 represent two
situations where bistability is not possible. In the absence of
inputs, the trajectories always converge to the set Llac,∗ (resp.,
Alac,∗), which correspond to the mode of repressed (resp.,
induced) lac operon.

A. Comparison to experimental results
The result of Proposition 5.4 can be compared to an

experiment reported in [2]. In this paper, the authors detect and
measure the bistable response of the lac operon. In one of the
experiments, a new strain of E. coli was constructed, which
has extra LacI binding sites introduced. Adding new LacI
binding sites is equivalent to increasing the activity threshold
θ1, because a larger number of LacI molecules will be needed
to produce the same level of repression of the operon. This
new strain of E. coli was then exposed to increasing levels
of extracellular TMG (a non-metabolizable lactose analogue).
Increasing the levels of extracellular lactose corresponds to
decreasing the activity threshold φ1, since it becomes easier
for permease LacY to recruit lactose. Thus it holds that
• increasing the levels of extracellular lactose (∼ 1/φ1)
leads to validation of condition (A1’);

• a large increase in LacI binding sites (∼ θ1) validates
condition (A2’).

According to Proposition 5.4, the mode “repressed lac operon”
is not stable for this new strain. And indeed, the experiment
(see [2], Fig. 4c) shows that only one qualitative type of
response can be obtained from this strain, corresponding to
the induced lac operon – as characterized by Alac,∗.

B. Controlling the system towards lactose metabolism
A fundamental problem in the analysis of bistable biological

systems is that of controlling or switching the system from one

stable mode to another. In many cases, while possible inputs or
stimuli are known (for instance, TNF in the apoptosis network;
or extracellular lactose or glucose in the lac operon), it is
not always clear how to “design” the control that will drive
the system to the desired state. Following our idea that each
desired state is represented by a set (as opposed to a single
stationary point), our results suggest one method to control the
system towards a desired set Q: first, “turn on” the stimulus
until the system is in a sufficiently small neighborhood of
Q, and then “turn off” stimulus. This is a reasonable protocol
from the experimental point of view, as cell stimulation is often
achieved through piecewise constant inputs: for instance, the
cells are maintained in a medium with fixed external lactose
and glucose concentrations (say E and G), for a certain time
interval (say t ∈ [t0, t0 + T ]).
For instance, to switch E. coli to the lactose metabolism

mode (Alac), glucose and external lactose should, respectively,
be removed from and added to the system, and maintained
at, respectively, low and high levels, for a suitable period
of time. To switch off lactose metabolism and go back to
glucose metabolism (Llac), it suffices to add an appropriate
amount of glucose to the medium and again wait for a
sufficiently long interval. Thus, the question of choosing an
appropriate stimulation interval arises or, more generally,
choosing appropriate combinations of E, G and T . The next
Proposition provides an answer to this question, by fixing a
minimum time interval needed to start lactose metabolism.
Assume that the bistability conditions (28) are satisfied.

Assume further that

N4 > N1. (29)

Let E0 < φ4(1 + ∆) and G0 < θ3(1 − ∆), and consider
constant inputs of the form:

u1(t) = E0, u2(t) = G0, t ∈ [0, T ], (30)

and u1(t) = u2(t) = 0 for t > T . Let δ ∈ (0, 1) and R be the
set constructed in the proof of Proposition 5.2, and define:

T1 = − 1
kx

ln
(

1− kxθ2

N4

1 + ∆
1− ε

)

T2 = − 1
kx

ln
(

1− N1

N4

)

T3 = T1 −
1

kw
ln

ε

1− ε

(
kwθ1

M2

1−∆
ε

− 1
)

T4 = T1 −
1

kw
ln

ε

1− ε

(
1 + δ

ε
− 1

)

T5 = − 1
kz

ln
(

1− kzφ2

M3

1 + ∆
1− ε

)

T6 = − 1
kz

ln (1− δ)

T7 = max{T3, T5}−
1
ky

ln (1− δ) .

By assumptions (28), (29), and ε < 1/2, it follows that all
arguments inside the logarithms are positive and less than 2.
Put

T∗ = max{T2, T4, T6, T7}.
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The next result shows that stimulus should be on for at least
T = T∗, in order to drive the lac operon to switch from lactose
to glucose metabolism modes.
Proposition 5.5: Let ξ(t, ξ0, u) be the solution of sys-

tem (17) with initial condition ξ0 ∈ Llac, and input (30).
Then ξ(t, ξ0, u) evolves in the set R (containing Alac), for
T∗ < t ≤ T .
Proof: We will show that, for T∗ ≤ t ≤ T , the trajectory

evolves inside the set R. For t ∈ [0, T ], for an input of the
form (30), it is clear that ẋ ≥ −kxx + (1 − ε)N4 and ż ≥
−kzz + (1 − ε)M3, so that (one may assume, in the worst
case, that x0 = z0 = 0):

x(t) ≥ (1− ε)N4

kx
(1− e−kxt)

z(t) ≥ (1− ε)M3

kz
(1− e−kzt).

It is straigthforward to check that:

T1 < t ≤ T ⇒ x(t) > θ2(1 + ∆) (31)
T2 < t ≤ T ⇒ x(t) > (1− ε)N1/kx (32)
T5 < t ≤ T ⇒ z(t) > φ2(1 + ∆) (33)
T6 < t ≤ T ⇒ z(t) > δ(1− ε)M3/kz. (34)

Coordinate w starts decreasing as x increases above θ2(1+∆):

w(t) ≤ M2

kw
e−kw(t−T1) +

εM2

kw
(1− e−kw(t−T1)),

and hence:

T3 < t ≤ T ⇒ w(t) ≤ θ1(1−∆) (35)

T4 < t ≤ T ⇒ w(t) ≤ (1 + δ)
εM2

kw
. (36)

Expression (35) and (33) imply that ẏ ≥ −kyy + M1N2(1−
ε)2, for max{T3, T5} < t ≤ T and so, in this time interval,

y(t) ≥ (1− ε)2M1N2

ky
(1− e−ky(t−T3,5)).

It is clear now that T7 < t ≤ T implies y(t) ≥ δ (1−ε)2M1N2
ky

.
This together with (32), (34), and (36) finishes the proof.
As indicated by this Proposition, external lactose is needed

to “switch” the system from glucose to lactose metabolism
(Llac to Alac). Indeed, glucose should be absent and external
lactose available, during a minimum length of time, T∗. The
inverse switch (Alac to Llac) would be obtained by inverting
the input conditions (i.e., high glucose, low external lactose).

VI. DISCUSSION
The examples discussed in Sections IV and V illustrate

a general formalism for modeling genetic networks, using a
class of inhibition and activation functions. These functions
are defined by appropriate physiological bounds, and allow
the mathematical model to capture the variability often en-
countered in biological systems. Using this formalism, the
possible responses of the network to various stimuli can
be characterized by identifying invariant sets of the model.
The goal is to identify invariant sets that represent distinct
qualitative modes of operation of the system. For instance,

the capacity of the network to exhibit bistable behavior is
characterized by the co-existence of two disjoint (compact
and nonempty) invariant subsets of the state space (named L
and A in the examples), with low versus high concentrations
of some species. Each of these invariant subsets is described
by conditions on the parameters (relating maximal activities,
activity thresholds and degradation constants), and represents
a distinct response of the network: life or cell death in
network (1), and lac operon repression or transcription in
network (17). In all examples, it is shown that the system is
locally ISS with respect to both L and A. This ISS property
leads to 0-invariance, that is in the absence of an input, if
the system starts in one of the sets, then it will remain in
that set. Since there are at least two such invariant sets, the
system is indeed capable of operating in two distinct modes,
in a stable manner. Furthermore, inputs or perturbations of
small magnitude (as given by the corresponding sets R) do not
drive the system far out from the 0-invariant set. Therefore, the
system exhibits robustness with respect to small fluctuations
in the environment, as its qualitative response is basically
unchanged.
In contrast, conditions on the parameters that guarantee

monostability are also given. Monostability is characterized
by the existence of a 0-invariant set (denoted by either L∗
or A∗ in the examples), with respect to which the system is
globally ISS. Global ISS with respect to a given compact set
L∗ guarantees that, in the absence of an input, the trajectories
of the system asymptotically converge to L∗, independently of
the initial condition, which rules out the capacity for a bistable
response of the network.
In both biological systems discussed, the wild type healthy

cell has the capacity for bistability, that is, it can respond in
two distinct ways, in a stable manner. However, damaged or
malfunctioning cells often loose the capacity for bistability.
This happens in the apoptosis network [33], where damaged
cells seem to loose the capacity to undergo apoptosis, causing
various diseases. It has also been verified for the lac operon on
specially constructed strains of E. coli, as in [2] (Section V-A).
The conditions developed in Propositions 4.1, 4.3, and 4.2, 4.4,
provide a means to classify cells, according to whether they are
healthy (both (L1)-(L3) and (A1)-(A4) satisfied), or not (either
(L1’)-(L2’) or (A1’)-(A2’)). For example, Proposition 4.4
describes a malfunctioning cell, such as a cancerous cell
(condition (L1’), low levels of C3a). And we have seen in
Section V that Proposition 5.4 correctly describes an E. coli
strain with extra LacI binding sites.
Our analysis can thus be applied to the detection of malfunc-

tioning or damaged cells. (Note that, if none of the conditions
is satisfied, then our analysis is not conclusive). By measuring
the maximal production rates, as well as degradation rates
and activation/inhibition thresholds for a given network, one
can then check which of the conditions (L1)-(L3), (L1’)-(L2’)
and (A1)-(A4), (A1’)-(A2’) are satisfied. Once the system is
thus classified, an appropriate input can be constructed, to
control the system to a desired compact set. Observe that if
the system (1) is in the living state L, then by sufficiently
increasing TNF (and appropriate conditions on µ5, ν3) it
is possible to drive the system towards apoptosis. Once the
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trajectory reaches the set A (or sufficiently close), the stimulus
can be “turned off” and the trajectory will remain in the
set A (or expected to converge towards A, if in its basin
of attraction). On the other hand, if the system starts in the
apoptosis set A, then no input will drive the system back
towards the “living” state – which of course makes sense
from the biogical point of view. In the lac operon network
(Proposition 5.5), it is interesting to note that two independent
inputs are needed to allow the system to switch between the
two stable modes, in both directions.

VII. CONCLUSION

A general framework has been discussed for modeling
genetic regulatory networks, where interactions among genes
and proteins are described in terms of a class of free-form
activation and inhibition functions. The formalism presented
in this paper intuitively relates the class of piecewise linear
hybrid models to a class of continuous models: one possible
extension of the formalism is to explore this connection to
further study and analyze piecewise linear models. Other
possible extensions of the current work include introducing
more general degradation functions.
The capacity for mono- or bi-stable behavior in a genetic

regulatory network can be fully characterized by identifying
appropriate 0-invariant compact sets for the system (with
respect to which the system is, respectively, globally or locally
input-to-state stable). Conditions relating the degradation rates,
maximal activities and threshold constants are provided, which
guarantee that the system will be capable of bistable or only
monostable behavior. Our analysis allows a classification of
systems (or cells) according to their capacity for monostable
or bistable responses. This classification helps to distinguish
among “healthy” and “damaged” or “malfunctioning” cells.
An application of this knowledge is the construction of suitable
inputs (stimuli) that will drive the system to a desired compact
set – and drive the biological network to a desired qualitative
response.
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yse, modélisation et simulation, ser. Integrative Post-Genomics, Lyon,
France, 2006.

[30] M. Krichman, E. Sontag, and Y. Wang, “Input-output-to-state stability,”
SIAM J. Control Optim., vol. 39, pp. 1874–1928, 2001.

[31] M. Arcak, D. Angeli, and E. Sontag, “A unifying integral iss framework
for stability of nonlinear cascades,” SIAM J. Control Optim., vol. 40, pp.
1888–1904, 2002.

[32] M. Schliemann, T. Eissing, P. Scheurich, and E. Bullinger, “Mathemati-
cal modelling of TNF-α induced apoptotic and anti-apoptotic signalling
pathways in mammalian cells based on dynamic and quantitative experi-
ments,” in 2nd Foundations of Systems Biology in Engineering (FOSBE),
Stuttgart, Germany, 2007, in press.

[33] T. Eißing, S. Waldherr, E. Bullinger, C. Gondro, O. Sawodny,
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