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A B S T R A C T   

Spent coffee grounds (SCG) are residues generated during coffee beverage preparation that contain 12–17% 
protein and are a rich source of peptides. Bacteria can generate peptides with potential bioactivity through 
protein hydrolysis in a fermentation process. This study aimed to obtain digested protein hydrolysates with 
potential bioactivity from Bacillus clausii-fermented SCG. The fermentation was performed with 1.5 × 108 colony- 
forming units/mL of bacteria at 37 ◦C for 39 h. Total and soluble proteins and protein hydrolysates were 
quantified using spectrophotometric techniques. Pepsin/pancreatin protein hydrolysates were characterized 
using ultra-performance liquid chromatography-mass spectrometry. The physicochemical properties and po
tential bioactivity of peptides were evaluated using in silico analysis. The fermentation process increased the 
amounts of total proteins, soluble proteins, and protein hydrolysates by 2.7, 2.2, and 1.2-fold, respectively, 
compared to non-fermented SCG. Fermented SCG samples, increased the abundance of seven peptides that 
displayed potentially antioxidant capacity, angiotensin-converting enzyme activity, and dipeptidyl peptidase-IV- 
inhibitor activity. The YGF and GMCC peptide sequences presented the highest bioactivity scores (0.97 each), 
followed by the YWRYDCQ (0.65) and RMYRY (0.60) peptides. In summary, fermented SCG had increased 
abundance of peptides with high bioactive potential that may be exploited in managing oxidative stress, hy
pertension, and diabetes.   

1. Introduction 

The research on biologically active compounds obtained from nat
ural sources is continually growing. Peptides are among the candidate 
bioactive compounds because of their utility, including their benefit to 
human health (Dullius, Fassina, Giroldi, Goettert, & Volken de Souza, 
2020). Peptides can be obtained from different food sources of animal 
and plant origin; currently, they are obtained from residues in the food 
industry (Kehinde & Sharma, 2020). 

Spent coffee grounds (SCG) are residues obtained during the process 
of instant coffee preparation. These residues are considered waste and 
have occasionally been used as fertilizers (Murthy & Madhava Naidu, 
2012). The use of SCG has been diversified to obtain biodiesel, food 
color, antioxidant dietary fiber, and dietary matrix for the extraction of 
phenolic compounds using different technologies (Nguyen, Nguyen, 

Wang, Juan, & Su, 2020; Passos et al., 2017; Vázquez-Sánchez et al., 
2018; Zuorro & Lavecchia, 2013). SCG protein hydrolysates with anti
oxidant and angiotensin-converting enzyme (ACE)-inhibitory activity 
have been obtained by enzymatic action (Valdés, Castro-Puyana, & 
Marina, 2020). 

SCG have lipid, carbohydrate, and protein contents of ~24, 13, and 
11 g/100 g, respectively; these are favorable characteristics for pro
cessing as a fermentable substrate. After a simulated digestion- 
fermentation process with SCG, a high chemoprotective activity 
against oxidative stress was observed in HepG2 cells, and anti- 
inflammatory properties were demonstrated in lipopolysaccharide 
(LPS)-stimulated RAW 64.7 macrophages; these activities were mainly 
related to hydrolyzed lignin and short fatty acids (López-Barrera, 
Vázquez-Sánchez, Loarca-Piña, & Campos-Vega, 2016; Martinez-Saez 
et al., 2017; Panzella et al., 2017). 
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Fermentation is a natural, alternative process for protein hydrolysate 
production. The activity of microbial proteolytic systems is used for 
hydrolyzing food proteins to release the peptides and amino acids used 
as a nitrogen source by microorganisms for growth (Montesano, Gallo, 
Blasi, & Cossignani, 2020). This protein hydrolysate production method 
is especially relevant in the dairy sector for harnessing the antioxidant, 
antimicrobial, antimutagenic, and antihypertensive activities of proteins 
(García-Burgos, Moreno-Fernández, Alférez, Díaz-Castro, & 
López-Aliaga, 2020; Halavach, 2020; Rochín-Medina, Ramírez-Medina, 
Rangel-Peraza, Pineda-Hidalgo, & Iribe-Arellano, 2018). However, in 
recent years, this method has been used for the preparation of food-plant 
protein hydrolysates, which act as inhibitors of an enzyme involved in 
the pathogenesis of metabolic syndromes and provide other health 
benefits (Montesano et al., 2020). 

Bacillus clausii is a Gram-positive spore-forming bacteria with the 
capacity to release phenolic compounds from different food matrices 
(Ramírez, Quintero-Soto, & Rochín-Medina, 2020; Rochín-Medina, 
Ramírez, Rangel-Peraza, & Bustos-Terrones, 2018). Additionally, this 
microorganism produces alkaline proteases (Kazan, Denizci, Öner, & 
Erarslan, 2005) with the potential to yield protein hydrolysates through 
its antimicrobial activity during fermentation (Rochín-Medina, Ramír
ez-Medina et al., 2018). However, there are no reports on bioactive 
peptides in fermented SCG. The objective of this study was to induce the 
release of peptides from B. clausii-fermented SCG digested proteins, 
identify them, and assess their bioactivity potential by in silico analysis 
of their peptide sequences as an alternative for obtaining potentially 
valuable compounds in the prevention of chronic diseases. 

2. Materials and methods 

2.1. SCG fermentation 

SCG were obtained from commercial Arabica coffee beans (World 
Table®, Mexico) roasted at a medium level. The SCG were sterilized and 
inoculated with a suspension of 1.5 × 108 CFU/mL of B. clausii (ATCC 
700160), grown in trypticase soy broth (MCD Lab, Mexico). The inoc
ulated samples were fermented at 37 ◦C for 39 h (Rochín-Medina, 
Ramírez, et al., 2018). 

2.2. Protein and peptide characterization 

2.2.1. Total protein 
Fermented (FSCG) and non-fermented (NFSCG) SCG total proteins 

were determined using a micro-Kjeldahl system (Tecator, Sweden), ac
cording to a previously established method (Martinez-Saez et al., 2017). 
Total protein concentrations are expressed as g/100 g of sample (db). 

2.2.2. Protein extraction and separation 
FSCG and NFSCG were dried at 50 ◦C for 3 d and defatted with 10 mL 

hexane by steeping; the mixture was stirred (Vari-Mix, ThermoFisher, 
USA) at 20 ◦C for 16 h. Samples were centrifuged at 15 000×g for 15 
min, and the pellets were washed by centrifugation with 20 mL of tri
chloroacetic acid in acetone (10%, w/v), followed by 0.2 mol/L 
ammonium acetate in methanol (80%, v/v), and then with acetone 
(80%, v/v) under the same centrifugation conditions. This procedure 
was repeated until the supernatant was colorless. For protein extraction, 
the pellet (1 ± 0.1 g) was resuspended in 20 mL of extraction buffer I 
(0.01 mol/L CaCl2, 0.01 mol/L MgCl2, and 0.001 mol/L PMSF), stirred 
(Vari-Mix, ThermoFisher, USA) at 20 ◦C for 12 h, and centrifuged at 15 
000×g at 4 ◦C for 30 min. The supernatant was recovered, and the pellet 
was mixed with 10 mL of extraction buffer II [0.1 mol/L Tris-HCl (pH =
8.0), 0.17 mol/L NaCl2, 0.001 mol/L PMSF, and 0.01 mol/L EDTA] for 8 
h. The supernatants were recovered by centrifugation and then mixed. 
The proteins were precipitated from the supernatants by using two 
volumes of 0.1 mol/L ammonium acetate in methanol (− 20 ◦C, 8 h) and 
then recovered by centrifugation (3000×g at 4 ◦C for 10 min). The pellet 

was washed with pure methanol followed by acetone (80%, v/v) and 
then dried to remove any solvents. The protein pellet was resuspended in 
1 mL of deionized water and dialyzed against distilled H2O at 4 ◦C for 3 
d. Soluble protein content was determined using bovine serum albumin 
(Merck, Germany) as the standard (Bradford, 1976). Protein extracts 
equivalent to 30 mg of sample were separated by SDS-PAGE using 0.125 
mg/mL polyacrylamide gel (acrylamide:bisacrylamide = 29:1, w/w) 
and stained with Coomassie blue R-250. 

2.2.3. Protein hydrolysates 
Defatted and depigmented FSCG and NFSCG proteins were hydro

lyzed by sequential enzymatic in vitro digestion using pepsin-pancreatin 
(Merck, Germany) (Megías et al., 2004). One gram of each sample was 
incubated at 37 ◦C for 3 h with a pepsin solution [20 mL 0.1 mol/L HCl, 
15 mg pepsin (pH = 2.0)]; then, the reaction was neutralized with 10 mL 
0.2 N NaOH. For the second incubation, samples were treated with 
pancreatin [7.5 mL phosphate buffer, 40 mg pancreatin (pH = 8.0)] at 
37 ◦C for 3 h. The enzymatic reaction was stopped by heating the 
samples at 80 ◦C for 20 min. The supernatant was separated by centri
fugation (5000×g at 4 ◦C for 10 min) and filtered with PVDF (0.45 μm; 
PALL. USA). The hydrolysates were separated by centrifugation with a 
membrane filter of 10 kDa, vacuum dried, and resuspended in 500 μL of 
HPLC grade water. Protein hydrolysate content was determined as 
described before for soluble proteins. 

2.2.4. Protein hydrolysate profiling by ultra-performance liquid 
chromatography-mass spectrometry (UPLC-MS) for hydrolysate peptide 
identification 

A 15 μL aliquot of protein hydrolysates was injected into a UPLC- 
diode array detection (DAD) system (ACCELA, Thermo Scientific, 
USA). The separation was performed in a C18-Luna column (150 × 4.6 
mm) (Phenomenex, Inc, USA) using 1% (v/v) formic acid (A) and 
acetonitrile (B) with a linear gradient of 0.5–30% B for 25 min at a rate 
of 0.2 mL/min. The detection was performed at 254 and 280 nm. The 
UPLC-DAD system was connected to a mass spectrometer with an elec
trospray ionization (ESI) source (LTQ XL, Thermo Scientific, USA) 
operating in positive mode (35 V, 300 ◦C). Data were analyzed using the 
Xcalibur 2.2 software (Thermo Scientific, USA), and full scan spectra 
were acquired in the m/z range of 100–2000. Selected ions for MSn 

experiments were fragmented by collision-induced dissociation by 
applying 10–45 V. Helium and nitrogen were used for collision and 
drying, respectively. 

2.2.5. In silico physicochemical properties and biological activities of FSCG 
and NFSCG peptides 

The physicochemical properties of FSCG- and NFSCG-identified 
peptides were evaluated by in silico analysis (Zhang et al., 2020). The 
hydrophobicity, net charge, and pI (isoelectric point) of peptides were 
calculated and predicted using the PepDraw tool (http://pepdraw. 
com/) (Zhang et al., 2020). Potential biological activities were ob
tained using the BIOPEP database (http://www.uwm.edu.pl/ 
biochemia/index.php/pl/biopep) (Minkiewicz, Iwaniak, & Darewicz, 
2019; Minkiewicz, Dziuba, Iwaniak, Dziuba, & Darewicz, 2008). The 
PeptideRanker tool (http://distilldeep.ucd.ie/PeptideRanker/) was 
used to classify peptides as bioactive based on the predicted probability 
(Ding, Liang, Yang, Sun, & Lin, 2020). Values close to 1 (on a scale of 
0–1) indicate a greater probability that the amino acid sequence exhibits 
bioactivity. 

2.3. Statistical design 

A one-way factorial design was used. The comparison of the means ±
SD among groups was performed using Tukey’s test for multiple com
parisons. Each experiment was replicated three times. Differences with 
p < 0.05 were considered significant at 95% confidence intervals. Sta
tistical analysis was performed using Minitab 16.0 (State College, PA). 
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3. Results and discussion 

The total protein content of NFSCG was 15 g/100 g (Table 1), a value 
within the reported range of 12.8–16.9% (Cruz et al., 2012; 
Jiménez-Zamora, Pastoriza, & Rufián-Henares, 2015). Fermentation of 
SCG significantly (p < 0.05) increased protein content by 2.8-fold rela
tive to that of NFSCG. This increase in total protein content by 
fermentation has been observed in coffee pulp fermented with Strepto
myces strains at 28–45 ◦C for 10 d (a 1.5-fold increase) (Orozco et al., 
2008) and in Lactobacillus plantarum-FSCG incubated at 37 ◦C for 48 h (a 
1.2-fold increase) (Choi, Rim, Na, & Lee, 2018). Soluble protein in FSCG 
(Table 1) increased significantly (p < 0.05) by 2.2-fold compared to that 
in NFSCG. There are few reports of the soluble protein content in coffee; 
a variation of 4.9–9.1 g/100 g of soluble proteins has been reported in 
several C. arabica cultivars (Baú, Mazzafera, & Santoro, 2001). The in
crease in protein upon fermentation can be attributed in part to the type 
of bacteria, fermentation conditions, increase in biomass, loss of dry 
matter due to the action of microorganism(s), and microbial degradation 
of complex proteins releasing peptides and amino acids (Pranoto, Ang
grahini, & Efendi, 2013). 

The significant increase (p < 0.05) in protein hydrolysates (Table 1) 
in FSCG samples (1.2-fold) can be attributed to the generation of small 
peptides after pepsin-pancreatin hydrolysis and of proteases produced 
by the fermentation process (Chauhan & Kanwar, 2020). 

FSCG and NFSCG proteins were separated by SDS-PAGE, and their 
expression profiles are shown in Fig. 1. The two low-molecular-weight 
bands found in both samples correspond to the subunits of legumin- 
like proteins from 11S globulins in coffee (Coelho et al., 2010). The 
protein 11S-legumin is a 55 kDa polypeptide that, under denaturing 
conditions, is cleaved into two legumin subunits: a basic form (α, 32 
kDa) and an acidic form (β, 22 kDa) (Rogers et al., 1999). A 76.3 kDa 
putative heat shock protein (HSP) was observed in FSCG and NFSCG 
(Fig. 1); this result is associated with a proteomic study of coffee that 
identified a 76.3 kDa HSP (HSP70) (K. G. do Livramento, Borém, Jose, 
et al., 2017; K. Livramento, Borém, Torres, et al., 2017) related to the 
stress response of coffee seed. The HSP could be synthesized as a 
response to high temperatures during the brewing process. 

Fig. 2 shows the chromatographic separation of protein hydrolysates 
from FSCG and NFSCG. The highest peak intensity for FSCG (a 1.7-fold 
increase relative to that for NFSCG) was observed between 0 and 10 min, 
followed by the second-highest peak intensity (1.5-fold relative to that 
for NFSCG) in the retention time interval between 20 and 30 min and a 
0.9-fold increase between 11 and 20 min. We detected seven peptide 
sequences in both FSCG and NFSCG (0–30 min); each peptide contained 
between two and seven amino acids and was 247.3–1033.3 Da in size 
(Table 2). This indicates that the fermentation increased the amounts of 
these peptides in FSCG. 

The predicted physicochemical properties of the identified peptides 
in protein hydrolysates from FSCG and NFSCG are shown in Table 2. 
Hydrophobicity, charge, peptide sequence, and low molecular size play 
an important role in some bioactivity properties in peptides from food 
matrices (Sun, Acquah, Aluko, & Udenigwe, 2020). In our study, the 
hydrophobicity of the identified peptides ranged from +6.63 to +10.59 kcal/mol. In addition, for all the peptides, the pI ranged from 4.84 to 

10.13. Only two peptides [YSR (Tyr-Ser-Arg) and RMYRY (Arg-Met-
Tyr-Arg-Tyr)] were positively charged in the neutral solvent with net 
charges of +1 and + 2, respectively, which is related to the type of 
transport across the gastrointestinal epithelium into blood circulation 
and to their bioactive functions (Sun et al., 2020). 

The bioactive potential of identified peptides from FSCG and NFSCG 
(Table 3) was determined by an in silico analysis using the BIOPEP 
database. Seven peptides with potential biological activity were found in 
both samples and were identified to potentially exhibit antioxidant, 
ACE, and dipeptidyl peptidase-IV (DPP-IV) inhibitor activities. The 
probability of bioactivity of each peptide was predicted by PeptideR
anker. The YGF (Tyr-Gly-Phe) and GMCC (Gly-Met-Cys-Cys) peptide 
sequences presented a higher score (0.97), followed by the YWRYDCQ 

Table 1 
Total protein, soluble protein, and protein hydrolysates in fermented (FSCG) and 
non-fermented (NFSCG) spent coffee grounds samples.  

Sample Total protein g/100 g of 
sample (db) 

Soluble protein 
(%)a 

Protein hydrolysates 
(%)b 

FSCG 41.67 ± 5.35a 38.92 ± 4.40a 81.97 ± 8.90a 

NFSCG 15.00 ± 1.00b 17.41 ± 3.51b 69.85 ± 7.02b 

Data are the mean ± SD of three independent experiment. Columns with 
different letters indicate statistical differences (t-test; p < 0.05). 

a Percentage based on total protein content (db). 
b Percentage based on soluble protein content (db). 

Fig. 1. Separation of fermented (FSCG) and non-fermented (NFSCG) spent 
coffee grounds soluble proteins by sodium dodecyl sulfate polyacrylamide gel 
electrophoresis. Molecular weight standards are shown on the left. HSP, heat 
shock proteins. 

Fig. 2. Chromatogram of protein hydrolysates from fermented (FSCG) and non- 
fermented (NFSCG) spent coffee grounds. 
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(Tyr-Trp-Arg-Tyr-Asp-Cys-Gln) and RMYRY peptides, with scores of 
0.65 and 0.60, respectively. The peptide sequences with the highest 
scores (Table 3) were found within the first 10 min in the chromato
gram, where peptides from FSCG exhibited peak intensities that were 
increased by 1.7-fold (Fig. 2). The structures and the MS/MS spectra of 
the four major peptides from FSCG and NFSCG are shown in Fig. 3. Some 
reports have shown that predicted peptides with a PeptideRanker score 
above 0.5 are more likely to be bioactive (Ding et al., 2020; Shang et al., 
2018). Protein hydrolysates from globulins are a pool of peptides with 
antioxidant activity (Ma, Zhang, Bao, & Fu, 2020; Torres-Fuentes, 
Contreras, Recio, Alaiz, & Vioque, 2015) and hypoglycemic potential 
(Mojica, Gonzalez de Mejia, Granados-Silvestre, & Menjivar, 2017) or 
more combined bioactivities such as antioxidants and ACE-inhibitors 
(Valdés et al., 2020; Vecchi & Añón, 2009; Zou, Wang, Wang, Aluko, 
& He, 2020); antioxidants and anti-inflammatory potential (Mojica 
et al., 2017; Montoya-Rodríguez, de Mejía, Dia, Reyes-Moreno, & 
Milán-Carrillo, 2014); antioxidants and DPP-IV inhibitors (Non
gonierma, Le Maux, Dubrulle, Barre, & FitzGerald, 2015); and antioxi
dants, ACE and DPP-IV inhibitors (Zaharuddin et al., 2020). 

There is no published information regarding the bioactivity of pep
tides presented in FSCG protein hydrolysates, and only scarce informa
tion for NFSCG peptides; however, some peptide fragments that present 
the hydrophobic amino acid Tyr (Y) on the C-terminal side are similar to 
the peptides obtained after enzymatic hydrolysis (thermolysis with 
alcalase) of Arabica-SCG (Valdés et al., 2020) and gastrointestinal 

digestion (with pepsin and pancreatin) of coffee silverskin 
(Pérez-Míguez, Marina, & Castro-Puyana, 2019). In the present study, 
five of the seven identified peptides contained Tyr (Y) in their sequences 
(Table 3, Fig. 3), which probably contributed to their bioactivity. Di
peptides containing Tyr (Y), Trp (W), Cys (C), or Met (M) and protein 
hydrolysates rich in these dipeptides are potential components of 
functional foods that enhance human health (Zheng, Zhao, Dong, Su, & 
Zhao, 2016). Other studies indicated that most antioxidant, 
ACE-inhibitory, and DPP-IV inhibitory bioactive peptides contain hy
drophobic [Leu (L), Ileu (I), Val (V), and Met (M)] and aromatic [Phe (F) 
and Tyr (Y)] acid residues, as well as the imidazole-ring-containing His 
(H) (Hernández-Ledesma, Quirós, Amigo, & Recio, 2007; Ma et al., 
2020; Mojica, Chen, & de Mejía, 2015). 

The proposed mechanism of action for the antioxidant activity of 
peptides reported at the cellular level include the regulation of antiox
idant enzymes, the thiol and hydroxyl groups available in peptide se
quences, the balance of intracellular levels of reactive oxygen species, 
and the reduction of lipid oxidation (Esfandi, Walters, & Tsopmo, 2019). 
The activity of some peptides to inhibit ACE and DPP-IV enzymes have 
been related to conformational changes due to hydrophobic and elec
trical interactions of the peptide sequences with the enzymes (Liu, 
Cheng, & Wu, 2019; Yan et al., 2020). 

This exploratory study has potential limitations. The composition of 
protein hydrolysates described in our work could be dependent on the 
coffee variety, the growing conditions, and the grain storage; factors 
directly related to the peptide sequence obtained from SCG (Figueroa 
Campos, Sagu, Saravia Celis, & Rawel, 2020; Rendón, de Jesus Garcia 
Salva, & Bragagnolo, 2014). Our results demonstrated that the 
fermentation and enzymatic hydrolysis of FSCG effectively produced an 
increase in soluble and hydrolysate proteins that may generate bioactive 
peptides. An advantage of FSCG is the use of an agro-industrial waste to 
obtain and increase through fermentation protein hydrolysates with a 
pool of low molecular weight peptides (<1 kDa) reported as sizes of 
peptide sequences with high bioactivity (Zou et al., 2020) that could be 
used as ingredients to formulate bioactive foods or food supplements. 

4. Conclusions 

This investigation may contribute relevant, novel information to the 
literature regarding the production of protein hydrolysates from agro- 
industrial waste with added value. The fermentation process increased 
the abundance of peptides; SCG fermentation with B. clausii improved 
the production of bioactive peptides with the potential to alleviate the 
effects of oxidative stress, hypertension, and diabetes. The peptide se
quences with a bioactivity probability value greater than 0.6 (YGF, 
GMCC, YWRYDCQ, and RMYRY) will be considered for further analysis. 
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Table 2 
Physicochemical properties of identified peptides from fermented (FSCG) and non-fermented (NFSCG) spent coffee grounds.  

Retention time (min) Sequence MH+ (Da) Error (ppm) Molecular mass (Da) Hydrophobicitya (Kcal/mol) Isoelectric pointa Net chargea 

7.92 YWRYDCQ 1033 8.61 1033.3 +10.59 6.06 0 
8.64 YGF 365 0.78 385.5 +6.63 5.38 0 
8.89 QT 247 2.02 247.3 +8.92 5.29 0 
9.12 RMYRY 885 9.89 787.4 +9.43 10.13 +2 
9.38 GMCC 415 3.87 309.5 +8.34 4.84 0 
14.08 YSR 422 8.23 424.2 +9.46 9.64 +1 
23.48 YQH 445 2.01 446.2 +10.29 7.60 0  

a The hydrophobicity, net charge and pI were calculated by the PepDraw tool (http://pepdraw.com). 

Table 3 
Bioactive potential of peptides identified after digestion with pepsin/pancreatin 
of fermented (FSCG) and non-fermented (NFSCG) spent coffee grounds proteins, 
using mass coupled ultra-performance liquid chromatography.  

Retention time 
(min) 

Peptide 
sequencea 

Scoreb Bioactive 
sequencec 

Activityc 

7.92 YWRYDCQ 0.65 RY, YW Antioxidant    
WRY, WR, YD, 
YW 

DPP-IV 
inhibitor 

8.64 YGF 0.97 YG, GF ACE-Inhibitor    
YG, GF DPP-IV 

inhibitor 
8.89 QT 0.05 QT DPP-IV 

inhibitor 
9.12 RMYRY 0.60 RY, MY ACE-Inhibitor    

YRY, MY Antioxidant    
MY, RM, YR DPP-IV 

inhibitor 
9.38 GMCC 0.97 GM ACE-Inhibitor 
14.08 YSR 0.32 YS DPP-IV 

inhibitor 
23.48 YQH 0.21 YQ, QH DPP-IV 

inhibitor  

a Aminoacids: Y: Tyr; W: Trp; R: Arg; D: Asp; C: Cys; Q: Gln; G: Gly; F: Phe; T: 
Thr; M: Met; S: Ser; H: His. 

b Peptide score by PeptideRanker for predicting the bioactivity potential (htt 
p://distilldeep.ucd.ie/PeptideRanker/). 

c The biological activity was predicted by the BIOPEP database (http://www. 
uwm.edu.pl/biochemia/). ACE, angiotensin-converting enzyme; DPP-IV, 
dipeptidyl peptidase-IV. 
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