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ABSTRACT: 13C NMR-based metabolomics was demonstrated as a useful tool for distinguishing the species and origins of
green coffee bean samples of arabica and robusta from six different geographic regions. By the application of information on 13C
signal assignment, significantly different levels of 14 metabolites of green coffee beans were identified in the classifications,
including sucrose, caffeine, chlorogenic acids, choline, amino acids, organic acids, and trigonelline, as captured by multivariate
analytical models. These studies demonstrate that the species and geographical origin can be quickly discriminated by evaluating
the major metabolites of green coffee beans quantitatively using 13C NMR-based metabolite profiling.
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■ INTRODUCTION

Coffee is one of the most important internationally traded
products. Among all known coffee species, the most common
are Coffea arabica L. (arabica) and Coffea canephora Pierre
(robusta). Robusta has been characterized as a neutral coffee,
weak-flavored, and occasionally with a strong and pronounced
bitterness,1 whereas arabica is higher-priced, milder, fruitier,
and acidulous.2 The quality of coffee depends strongly on
species and geographic origin, with consequent wide variations
in its commercial value. The importance of the coffee market
and its globalization have increased concern about species and
origin, and producers have responded by offering products with
origin labeling to the consumer. Therefore, it is very important
to guarantee the authenticity of species and geographic origins
of coffee beans.
A variety of analytical techniques with various degrees of

sensitivity and specificity, such as gas chromatography (GC),3

high-performance liquid chromatography (HPLC),4,5 isotope-
ratio mass spectrometry (IRMS),6 visible micro-Raman spec-
troscopy,7 ultraviolet−visible absorption spectroscopy (UV−
vis),8 elemental analysis-like inductively coupled plasma−
atomic emission spectrometry (ICP-AES),9 and liquid
chromatography−mass spectrometry (LC-MS),10−12 have
been conducted during the past decade to find chemical
components that can be used to discriminate coffee species and
origins. However, all of these techniques are compound-
targeted; they can each assess differences in only one
component or one class of components.
Recently, modern nuclear magnetic resonance (NMR)

spectroscopy, with an informative, nondestructive, and non-
targeted nature,13,14 coupled with a multivariate analysis such as
principal component analysis (PCA) or orthogonal partial least
squares discriminated analysis (OPLS-DA), has been applied to
obtain metabolite profiles of various kinds of biofluids15,16 and
foods, including honey,17 meat,19 mango juice,19 tea,20−22

wine,23 and cheese.24 In previous works we characterized green

and roasted coffee bean extracts by NMR and monitored the
roasting process by observing the time course of all the NMR-
visible components.25−27 NMR combined with PCA has been
used in the discrimination of instant coffee among different
producers by Charlton et al.,28 as well as in the discrimination
of roasted coffee beans from different geographical origins by
Consonni et al.29 However, in these studies, roasted coffee bean
beverages rather than green coffees were analyzed, and the
signal assignment was incomplete so that further assignments
would be necessary to obtain more information from the NMR
spectra. Thus, a global profiling of green coffee beans of
different species and origins by NMR with detailed assignment
information has not yet been reported. The detailed analysis of
metabolites in various green coffee beans with the assignment
information is needed to reveal and explain the differences
between different species and origins.25

In the present study, 13C NMR spectroscopy with detailed
assignment information, coupled with PCA and OPLS-DA
models, was applied to distinguish the species and origins of
green coffee beans and to identify significantly different
metabolites between species and origins.

■ MATERIALS AND METHODS
Coffee Beans. As shown in Table 1, we used arabica coffee beans

from four origins (Brazil, Colombia, Guatemala, and Tanzania) and
robusta coffee beans from two origins (Indonesia and Vietnam), which
were kindly supplied by Ajinomoto General Foods, Inc. (Tokyo,
Japan). The green coffee beans were frozen at −30 °C until analyzed.

NMR Samples. The green coffee beans were ground into grains
about 1−2 mm in size using a Kalita C-120 coffee mill (Kalita Co.,
Ltd., Tokyo, Japan). The crushed beans (1.5 g) were incubated at 95
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°C in a closed plastic tube with D2O (3.50 mL, 99.7%; Shoko Co.,
Ltd., Tokyo, Japan) for 1 h. The extracts were cooled on ice for 15 min
and then centrifuged at 5000g at 4 °C for 5 min. The supernatant (500
μL) was removed to a new tube and mixed with phosphate buffer (100
μL, 0.2 M sodium phosphate, pH 6.0). 4,4-Dimethyl-4-silapentane-1-
sulfonate (DSS; Wako Pure Chemical Industries, Ltd., Osaka, Japan)
was used as the internal reference, and its chemical shift was set to 0
ppm. The green coffee bean extracts (GCBE) were then transferred
into 5 mm NMR tubes.25

NMR Spectroscopic Analysis. The one-dimensional (1D) 1H
and 13C NMR spectra were measured at 500 and 125.65 MHz,
respectively, on a Varian Unity INOVA-500 spectrometer. For the 1H
NMR spectra, the H2O signal was suppressed by the presaturation
method, and the parameters for observation were as follows: number
of data points, 64K; spectral width, 8000 Hz; acquisition time, 4.00 s;
delay time, 2.0 s; number of scans, 128. The parameters for the 13C
NMR spectra were as follows: number of data points, 64K; spectral
width, 31422 Hz; acquisition time, 1.04 s; delay time, 2.0 s; number of
scans, 15000.

NMR Data Processing. The free-induction decay (FID) NMR
data were processed by the program MestRe Nova (version 5.3.0;
MestReC, Santiago de Compostela, Spain).

NMR Signal Assignments. The signal assignments of the
components in GCBE have been carried out on the basis of analysis
of two-dimensional (2D) 1H−1H DQF-COSY, 1H−13C HSQC, and
1H−13C CT-HMBC NMR spectra, and the results have been
previously published.25

Multivariate Data Analysis. The 13C NMR spectral data were
reduced into 1 ppm spectral buckets, and all spectra were aligned and
normalized by MestRe Nova. The resulting data sets were then
imported into SIMCA-P version 12.0 (Umetrics, Umea,̊ Sweden) for
further multivariate statistical analysis.

Prior to PCA, data were mean-centered and then scaled using
Pareto or UV scaling. Hotelling’s T2 region, shown as an ellipse in the
score plots, defined the 99% confidence interval of the modeled
variation. The quality of the model was described by Rx2 and Q2

values. Rx2 was defined as the proportion of variance in the data
explained by the model and indicates goodness of fit. Q2 was defined as
the proportion of variance in the data predictable by the model and
indicates predictability.

To maximize the separation among samples, OPLS-DA was applied,
which is described as the regression extension of PCA, an unsupervised
pattern recognition method, giving the maximum covariance between
the measured data (X) and the response variable (Y). For the OPLS-
DA model, the confidence level for membership probability was
considered to be 95%; observations at <5% are considered to be
outliers. The overall predictive ability of the model is assessed by
cumulative Q2 representing the fraction of the variation of Y that can
be predicted by the model, which was extracted according to the
internal cross-validation default method of SIMCA-P software. The
method we used appears parsimonious and robust, with general
applicability to data mining from metabolomic and similar data.

Table 1. Species and Origins of Green Coffee Beans Used in
the Present Study

species origin year of harvest no. of batches

arabica Brazil, South America 2010, 2012 10
Colombia, South America 2010, 2012 10
Guatemala, Central America 2010, 2012 10
Tanzania, Africa 2010, 2012 10

robusta Indonesia, Asia 2010, 2012 10
Vietnam, Asia 2010, 2012 10

Figure 1. Assigned (A) 1H and (B) 13C NMR spectra of two typical green coffee bean extracts of the arabica from Colombia (blue line) and the
robusta from Indonesia (red line).
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■ RESULTS AND DISCUSSION
1H and 13C NMR Spectra of Green Coffee Bean

Extracts of Arabica and Robusta. Figure 1 shows
representative 1D 1H and 13C NMR spectra of aqueous
GCBE samples of arabica from Colombia and robusta from
Indonesia. The 1D NMR spectra of arabica and robusta give
similar signal patterns, which contain the resonances from
sucrose, caffeine, caffeoylquinic acids (CQAs), trigonelline,
choline, myo-inositol, quinic acid, citrate, malate, acetic acid,
and amino acids.
As shown in Figure 1A, the overall 1H NMR fingerprints

between the arabica and the robusta samples are similar.
However, close inspection of the spectra revealed that the
chemical shifts due to caffeine and CQAs, the most abundant
chlorogenic acids in coffee beans,30 were shifted remarkably
between species. According to a previous study, caffeine
interacts with chlorogenic acid molecules in aqueous solution
to form the caffeine−chlorogenate complex, the chemical shifts
of which change with the relative concentrations of the two
components.31 Although the phosphate buffer was used to
remove the pH variation among samples, the concentration-
related changes in chemical shifts due to the caffeine−
chlorogenate complex could not be removed by sample
preparation. The concentration-related changes in chemical
shifts induced new overlapping signal patterns, especially in the
regions of 3.0−3.4 and 6.5−7.0 ppm, which led to large errors
in signal recognition, alignment, and binning of data processing
for PCA. Furthermore, owing to the strong signal overlapping
of 1H resonances, which increased the difficulty of and
frequency of errors in the identification of variables in PCA
and OPLS-DA models, the informative 13C NMR spectra, the
signals of which are well separated, were used in the
classification of green coffee beans according to their species
and origins.
Figure 1B shows the 13C NMR spectra of arabica and robusta

GCBE samples. The signals were narrow and less overlapped
than those in the 1H NMR spectrum. Although no clear
apparent differences were observed in the overall spectral
patterns, the chemical compositions of metabolites obtained
from the different species were distinctly different. The 1H
resonances due to the caffeine−chlorogenate complex were
shifted remarkably when the relative concentrations varied
between species, but no such effect was found in the 13C NMR
spectra. The reason for this may be that the noncovalent
correlations between caffeine and chlorogenic acids are not
strong and thus affect the chemical environments in 1H nuclei
but not those in 13C nuclei.26 Therefore, the present 13C NMR
spectroscopy was considered to be useful for metabolomics of
GCBE. As described in a previous study, 13C NMR spectros-
copy would be useful in metabolomics by providing
complementary component information while potentially
reducing the problems of overlap that occur in 1H NMR
spectroscopy.32 The problem of long T1 relaxation times
reduces signal intensities, and hence the quantification can be
problematic. Nevertheless, for metabolomic studies in which all
samples are measured under identical conditions, such
quantification is less necessary if the T1 times remain constant,
because it is the overall pattern of response that can be
interpreted.27

Multivariate Statistical Analysis of Green Coffee Bean
Extracts by 13C NMR Spectroscopy. To see the differences
in chemical components in GCBE with respect to different

species and origins, six different GCBE samples, as listed in
Table 1, were analyzed. PCA is an unsupervised classification
method requiring no a priori knowledge of the data set and acts
to reduce the dimensionality of multivariate data while
preserving most of the variance within it.33 The PCA score
plot with high statistical values of Rx2 (0.913) and Q2 (0.853) is
given in Figure 2A, which is derived from the 13C NMR spectra
of GCBE of two species and from the six countries. Rx2

represents the goodness of fit, and Q2 reveals the predictability
of the PCA model.18 The PCA models using projections into
two dimensions (PC1 of 0.62 and PC2 of 0.11) show
statistically significant separation among the GCBE samples,

Figure 2. (A) PCA and (B) OPLS-DA score plots derived from the
13C NMR spectra of all GCBEs of arabica and robusta; (C) S-plot
generated from the OPLS-DA model. The range of the variables
selected is highlighted with a dotted rectangle. Cutoff values for the
covariance of |p| ≥ 0.05 and for the correlation of |p(corr)| ≥ 0.5 were
used. The variables in dotted rectangles represent the metabolites
responsible for differentiation in OPLS-DA score plots; the names of
metabolites corresponding to the variable are sucrose, trigonelline,
malate, and citrate for arabica and chlorogenic acids, caffeine, and
choline for robusta.
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indicating that the most significant differences in metabolite
composition are between species. To clearly identify the
significantly correlated metabolites between species, OPLS-DA
modeling was applied to the total data set. The OPLS model
(see Figure 2B), established the use of two predictive
components and one orthogonal component and revealed
very high statistical values: OPLS1 of 0.58, OPLS2 of 0.15, Rx2

of 0.792, Ry2 of 0.992, and Q2 of 0.988. Figure 2B shows clear
separation between arabica and robusta GCBE. To further
understand the underlying variables contributing to the
differentiation, we constructed the S-plot from the OPLS-DA
model as shown in Figure 2C. The S-plot visualizes both the
covariance p and correlation p(corr) between the metabolites
and the modeled class designation.34 The S-plot helps identify
statistically significant and potentially biochemically significant
metabolites, on the basis of both contributions to the model
and their reliability. The variables selected in the S-plot are
highlighted with a dotted rectangle. Cutoff values for the
covariance of |p| ≥ 0.05 and for the correlation of |p(corr)| ≥
0.5 were used.18,35 Therefore, variables in the dotted rectangles
of Figure 2C contributed to the group separation and were

considered to be statistically significant metabolites in arabica
and robusta GCBEs. The significant variables were identified
according to the 13C assignment information25 as shown in
Figure 2C. Compared with the robusta, the arabica contained
significantly higher levels of sucrose, citrate, trigonelline, and
malate, whereas the robusta was characterized by higher levels
of CQAs, caffeine, and choline.
To investigate the metabolic differences among different

origins, PCA modeling was applied to the arabica data set. As
shown in Figure 3A, GCBEs of arabica from Colombia, Brazil,
Guatemala, and Tanzania were clearly distinguished from one
another using a three-dimensional (3D, PC1 of 0.49, PC2 of
0.16, and PC3 of 0.07) PCA score plot with high statistical
values of Rx2 (0.810) and Q2 (0.705). The loading scatter plot
of PC1 and PC3 is shown in Figure 3B, because PC1 coupled
with PC3 provided a clear classification according to origin.
According to the assignment of 13C NMR signals due to GCBE
components, some significant variables were captured and
highlighted, and these are responsible for the differentiation in
the PCA score plot. As shown in Figure 3B, the top right
section of the loading plot, characterized by PC1 > 0 and PC3

Figure 3. PCA (A) 3D score plot and (B) loading scatter plot (PC1 and PC3) derived from the 13C NMR spectra of GCBEs of the arabica from four
different origins: Brazil, Colombia, Guatemala, and Tanzania.
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> 0, indicates the relatively high levels of sucrose, acetic acid,
and trigonelline in GCBEs from Tanzania. The bottom right
section, characterized by PC1 > 0 and PC3 < 0, reveals the
relatively high levels of CQAs, citrate, and sucrose in GCBEs
from Colombia. The bottom left section, characterized by PC1
< 0 and PC3 < 0, represents the variables for caffeine, showing
that GCBEs from Guatemala contain more caffeine than other
arabica GCBEs. The top left section, characterized by PC1 < 0
and PC3 > 0, reveals the relatively high levels of amino acids in
GCBEs from Brazil.
As to GCBEs of the robusta, PCA modeling was first applied

to confirm if the differences due to different origins could be
detected. As shown in Figure 4A, a PCA model constructed
with two principal components (PC1, 0.32; and PC2, 0.24)
showed separation between the GCBEs from Indonesia and
those from Vietnam by PC2. The statistical values of Rx2 and
Q2 were 0.917 and 0.698, respectively. To clearly identify the
significantly correlated metabolites between GCBEs from
Indonesia and Vietnam, OPLS-DA modeling was applied.
The OPLS model (see Figure 4B), which is established by two
predictive components and one orthogonal component, gave
very high statistical values: OPLS1 of 0.20, OPLS2 of 0.23, Rx2

of 0.821, Ry2 of 0.998, and Q2 of 0.991. Figure 4B shows clear
separation between GCBEs from Indonesia and Vietnam. The
S-plot from the OPLS-DA model was constructed to further
clarify the underlying variables contributing to the differ-
entiation (see Figure 2C). The variables chosen in the S-plot
are highlighted with a dotted rectangle. Variables representing
trigonelline, citrate, malate, 5-CQA, and 4-CQA were captured
as the characteristic components in GCBEs from Indonesia.
The highlighted variable on the left corresponds to caffeine and
3-CQA according to the assignment information, indicating
relatively high levels in GCBEs from Vietnam.
In these analyses of the separation of GCBEs, it is possible

that, besides species and origins, other parameters such as the
altitude of the plantation and processing techniques may also
affect the separation results of GCBEs by affecting other PCs in
the PCA models. However, only the differentiation due to
species and origins was picked up and identified in this study.
Figure 5 summarizes the significantly different metabolites

captured by PCA and OPLS-DA models in the discrimination
of GCBEs according to their species and origins. The levels of
the identified metabolites differed dramatically among GCBE
samples of different species and from different origins. As
shown in Figure 5, GCBEs of the arabica showed higher levels
of sucrose than those of the robusta by the present 13C NMR-
based metabolomics. Sucrose is a compound in raw coffee
beans that has been implicated as an important precursor of
coffee flavor and aroma.36 In terms of cup quality, arabica is
appreciated to a greater extent by consumers because it is less
bitter and tastes better than the robusta. The reason the robusta
accumulates less sucrose than the arabica is that the former has
higher sucrose synthase and acid invertase activities early in
grain development but less capacity for sucrose resynthesis at
the final stages of grain development.37,38 Among the arabica
samples, GCBEs from Colombia and Tanzania showed higher
levels of sucrose; this was captured by the PCA model in the
present study. The present study showed higher levels of
citrate, malate, and trigonelline in the arabica than in the
robusta, which is consistent with previous studies.39−42 The
arabicas are valued for the impact that their higher acidity has
on taste, whereas tasting notes for the robustas usually do not
include this parameter. The level of citrate was higher in

GCBEs from Indonesia than in those from Vietnam. This can
be considered a marker for distinguishing green coffee beans
from Indonesia or Vietnam. Trigonelline levels were higher in
GCBEs of the arabica than in those of the robusta. This finding
is consistent with the results of a previous study.43 When only
the arabicas were under consideration, the lowest level of
trigonelline was in the GCBEs from Guatemala.
Caffeine, choline, and chlorogenic acids showed higher levels

in the robusta than in the arabica, consistent with previous
observations.44,45 It has been reported that the patterns of
fluctuations of the caffeine biosynthetic activity in Cof fea plants

Figure 4. (A) PCA and (B) OPLS-DA score plots derived from the
13C NMR spectra of GCBEs of the robusta from two different origins,
Indonesia and Vietnam; (C) S-plot generated from the OPLS-DA
model. The range of the variables selected is highlighted with a dotted
rectangle. Cutoff values for the covariance and correlation are |p| ≥
0.05 and |p(corr)| ≥ 0.5, respectively. The variables in the dotted
rectangles represent the metabolites responsible for differentiation in
the OPLS-DA score plots; the names of metabolites corresponding to
the variables are trigonelline, citrate, malate, 5-CQA, and 4-CQA for
beans from Indonesia and caffeine and 3-CQA for beans from
Vietnam.
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are all similar, although the final concentration of caffeine varies
among different species of coffee beans.46 Caffeine showed
higher levels in the robusta GCBEs from Vietnam than in those
from Indonesia, which is consistent with the previous profiling

by HPLC.4 It has also been reported that the amounts of
caffeine in green coffee beans from Central America (e.g.,
Guatemala) are higher than in beans from South America (e.g.,
Brazil and Colombia) and Africa (e.g, Tanzania).4 In the

Figure 5. Significantly different metabolites captured by PCA and OPLS-DA models derived from the 13C NMR spectra of all GCBEs: sucrose, Var
ID 104; citrate, Var ID 45; malate, Var ID 43; trigonelline, Var ID 49; caffeine, Var ID 28; choline, Var ID 56; 5-CQA, Var ID 39; 4-CQA, Var ID 38;
3-CQA, Var ID 170; acetic acid, Var ID 23; L-Ala, Var ID 17; L-Asn, Var ID 52; L-Glu, Var ID 55; and GABA, Var ID 40.
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present study, the same tendency was observed. Furthermore,
for beans from South America, beans from Brazil were observed
as containing more caffeine than those from Colombia. Choline
showed higher levels in the robusta than in the arabica in the
present study. Coffee is the top contributor of free choline,
which is an essential nutrient required for methyl group
metabolism, and it has been related to the reduction of breast
cancer risk.47 Green coffee beans of the robusta contained
higher amounts of CQAs. As for the arabica, the highest 5-CQA
levels were detected in GCBEs from Colombia and the lowest
levels from Brazil. According to the previous study that used
HPLC, the highest 5-CQA levels were observed in beans from
Africa and the lowest levels from South America.4 It could be
that although beans from Colombia contain the greatest
amount of 5-CQA, the average amounts of beans from the two
countries, Columbia and Brazil, of South America show the
lowest levels of 5-CQA when compared to beans from
Tanzania. The lowest levels of 4-CQA were detected in
beans from Guatemala, and the highest levels of 3-CQA were
observed in beans from Colombia, which are both consistent
with a previous study.4 The lower levels of CQAs in the arabica
make these beans more vulnerable to phytopathogens as well as
to biological and mechanical stress than the robusta beans.4,48

Acetic acid and amino acids also showed an important role in
the origin discrimination of GCBEs. The GCBE with the
highest level of acetic acid was from Tanzania in this study.
GABA exists in higher levels in GCBEs from Tanzania than in
those from any other origin, whereas L-glutamine was higher in
GCBEs from Brazil and Guatemala. The arabica from Brazil
also showed higher levels in L-alanine and L-asparagine. A
previous study presented a discrimination methodology
between the arabica and robusta coffee species on the basis
of their amino acid enantiomers.3 In the present study, the
variation of amino acids contributed to the assessment of
geographical origins of the arabica GCBEs. Currently, the
reasons for the geographical differences in metabolomic profiles
are not fully understood. Therefore, reliable analytical
techniques and studies on the physiology of coffee beans are
still required to confirm and guarantee the authenticity of the
species and geographic origins of coffee beans.
In summary, the present study demonstrated that 13C NMR-

based metabolomics is a useful tool for distinguishing species
and origins of GCBE samples and that its combination with
chemometric analysis largely improves sample classification. By
applying signal assignment information, significantly different
metabolites captured by multivariate analysis were identified in
the classification. Our study demonstrates that the species and
geographical origin of green coffee beans can be rapidly
discriminated by evaluating the major metabolites quantitatively
using metabolite profiling.
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