
Recent evidence from behavioral (e.g.,
Barsalou, 1999) neuropsychological (e.g., Tranel et
al., 2003) and neuroimaging investigations
(reviewed in Martin and Chao, 2001) provide
support for an old idea, that object concepts are
grounded in perception and action (Broadbent,
1878; Lissauer, 1890, 1988). This idea posits that
the concept of a particular object is represented
within the same sensory and motor systems
engaged when we learned about, or interacted with,
the object. Many current investigators have stated
similar positions (Allport, 1985; Damasio, 1990;
Farah and McClelland, 1991; Humphreys and
Riddoch, 1987; Safran and Schwartz, 1994;
Warrington and McCarthy, 1987; Warrington and
Shallice, 1984). We discuss recent functional
neuroimaging studies that provide additional
support for the sensory-motor model, and suggest
functional roles for different brain regions
important for tool use. In particular, we concentrate
on the role of the left temporal cortex in perceiving
and knowing about tools and their functions.

GROUNDING OBJECT CONCEPTS IN PERCEPTION

AND ACTION

We begin with a brief introduction to the
sensory/motor model of object concept
representation (Barsalou et al., 2003; Martin, 1998;
Martin et al., 2000). For any given individual, the
concept of a specific object (such as a hammer)
consists of everything the individual knows about

the object, such as that hammers have handles, are
usually made of wood or metal, are useful to
pound nails, and that Maxwell had a silver hammer
in the Beatles song of that name. This level of
representation of an object is often referred to as
associative or encyclopedic knowledge, and is
characterized by its explicit expression (usually via
language), unlimited size and scope, and individual
idiosyncrasies. A different level of object concept
representation is referred to as “semantic
primitives” (Martin, 1998). In contrast to
encyclopedic knowledge, semantic primitives are
accessed implicitly and automatically in the service
of comprehension, are highly constrained in
number, and are universal. This level of
representation allows us to quickly and efficiently
identify objects and understand words, and forms
the foundation for our vast stores of encyclopedic
knowledge about objects. While the sensory/motor
model does not address the organization of
encyclopedic knowledge, it makes strong claims
about the organization of semantic primitives with
regard to both their representational content and
organization in the brain.

In the sensory/motor model, the concept of an
object is composed of semantic primitives that
represent those properties of the object that allow for
fast and efficient recognition. For tools, these
properties include stored representations of what
they look like, how they move when used, and how
we manipulate them. These primitives are stored
within the same neural systems active when we
learned about those properties. Specifically, they are
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stored within visual processing systems for
perceiving object form and object motion, and action
systems responsible for visuomotor transformations
and for grasping and manipulating objects.

ROLE OF TEMPORAL LOBES IN REPRESENTING

VISUAL PROPERTIES OF TOOLS: FORM AND MOTION

In the human brain, tools elicit activity in a
distributed network of brain areas, concentrated in
the left hemisphere. This network is active across
presentation format (pictures, visual words or
auditory words) and processing task (viewing
objects, naming objects, retrieving information
about tools and their action-related properties,
performance of the object-appropriate action). The
brain regions in this network can be divided into
four anatomical regions (Figure 1A). Like all
object categories, visual presentation of tools
evokes activity in posterior ventral temporal cortex.
Tool-related activity in this region is strongest in
the medial portion of the fusiform gyrus, located in
between face-preferring regions more laterally and
house/place-preferring regions more medially
(Chao et al., 1999). Greater activity to tools than to
other object categories in the medial fusiform gyrus
has been replicated a number of times using both
pictures and words (Beauchamp et al., 2002, 2003;
Chao et al., 2002; Devlin et al., 2005; Whatmough
et al., 2002). A second focus of tool-related activity
is found in left posterior lateral temporal cortex.
This region is located on the lateral surface in the
middle temporal gyrus and inferior temporal sulcus
(abbreviated MTG). The remaining tool-responsive
regions (also in the left hemisphere) consist of an
anterior portion of the intraparietal sulcus (IPS) in
the inferior parietal lobule and ventral premotor
cortex (VPM) (Binkofski et al., 1999; Chao and
Martin, 2000; Handy et al., 2003; Johnson-Frey et
al., 2004; Kellenbach et al., 2003; Gerlach et al.,
2002; Grabowski et al., 1998).

There is general consensus on the importance of
the frontal-parietal circuit for the grasping and
manipulation of objects, and computation of the
required sensorimotor transformations (Jeannerod et
al., 1995; Johnson-Frey, 2003; Rizzolatti and
Luppino, 2001). In addition to action performance
(such as the manual manipulation of tools) this
circuit, especially in the left hemisphere, is also
important for perceiving the actions of others,
imagining, imitating or pantomiming actions, and
knowing about them (e.g., Buxbaum and Saffran,
2002; Gainotti et al., 1995; Goldenberg et al., 2003;
Grezes and Decety, 2001; Jeannerod, 2001;
Johnson-Frey, 2004; Martin, 2001; Rumiati et al.,
2004). While the importance of parietal and
premotor regions in human interactions with tools
has received considerable attention, the function of
left posterior MTG has remained relatively obscure.

One hint to the role of left MTG in knowing

about tools and their functional characteristics
came from a functional neuroimaging study using
property production tasks. Subjects were required
to verbally generate object properties in response to
object pictures or their written names (Martin et
al., 1995). When subjects generated a word
denoting an action associated with the object (e.g.,
‘write’ in response to pencil) activity in the left
MTG was greater than when subjects generated the
name of a color associated with the object (e.g.,
‘yellow’ in response to pencil). The reverse contrast
(color > action word generation) elicited activity in
ventral temporal cortex, anterior to regions
associated with color sensation (e.g., Beauchamp et
al., 1999; Hadjikhani et al., 1998; Lueck et al.,
1989). For action word generation, the active
portion of MTG was located just anterior to area
MT/V5, known to be an important locus of cortical
visual motion processing (e.g., Beauchamp et al.,
1997; Tootell et al., 1995; Watson et al., 1993).
Because of the selectivity of the left MTG response
to action word generation, and its proximity to the
visual motion area MT/V5, we suggested that
information about the motion properties associated
with object actions may be stored in this region
(Martin et al., 1995). This speculation received
additional support from an object naming study
that found greater activity for naming tools than
animals in the same region of left MTG active
during action word generation (Martin et al., 1996).
These reports were quickly followed by
neuropsychological evidence linking impaired tool
recognition to left MTG damage (Tranel et al.,
1997). The association between action word
generation, tool naming, and activation of the
posterior region of the left MTG has been
replicated numerous times using different imaging
methods and experimental paradigms (e.g., Devlin
et al., 2002; Phillips et al., 2002; for extensive
review, see Martin, 2001) as has the association
between tool and action knowledge deficits and left
MTG lesions (Tranel et al., 2003). The consistency
of these findings suggests that the left MTG is a
critical node in the neural circuitry underlying
knowledge of tools and their associated actions.

Several lines of evidence support the idea that
the motion of real-world object is processed in
lateral temporal cortex. Viewing static images of
objects that imply motion – such as a picture of a
cup in mid-fall – evoke greater activity in lateral
temporal cortex than static images without implied
motion (Kourtzi and Kanwisher, 2000; Senior et
al., 2000). Extensive evidence from single unit
recording studies in non-human primates and
imaging studies in humans indicate that part of
lateral temporal cortex in an around the superior
temporal sulcus (STS) is specialized for processing
biological motion (reviewed in Puce and Perrett,
2003). These findings raised the possibility that
information about object-associated motion was
represented in lateral temporal cortex, with
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biological motion in STS and non-biological
motion typical of tools in the MTG.

Direct tests of this motion property hypothesis
required new functional magnetic resonance (fMRI)
experiments. Although previous studies had shown
that viewing static images of tools evokes activity
in left MTG, no information was available about
brain responses to moving tools. If motion
properties associated with tools are represented in
MTG, this region should not only show a stronger
response to tools than animate, biological objects,
but should respond more strongly to moving tools

than to static images of these objects. In contrast, if
information about the form of an object, and form-
related properties like color, is represented in
ventral temporal cortex, then ventral temporal
areas, such as fusiform gyrus, should show
category-related responses, but no advantage for
moving over static object images.

In order to test these ideas, it was important to
use objects of clear ethological relevance, depicting
familiar, easily discriminable motions. Therefore, we
used short video clips of familiar tools moving in
their characteristic fashion (e.g., saws sawing,
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Fig. 1 – (A) Lateral (left) and ventral (right) view of an inflated left hemisphere showing brain areas (in blue) that show a larger
response to videos of moving tools than to videos of moving humans (yellow color scale shows the reverse contrast). Gray scale indicates
anatomical features (dark grays correspond to depths of sulci, whites to crowns of gyri). Re-analysis of individual subject data from
(Beauchamp et al., 2003). Abbreviations: VPM: ventral premotor; IPS: intraparietal sulcus; MTG: middle temporal gyrus and inferior
temporal sulcus. (B) Relationship between visual motion processing area MT and associated areas (abbreviated MT+) and tool-preferring
cortex. Location of MT+ (obtained with a standard localizer) is shown with a black outline. Regions preferring tool or human stimuli are
shown in color (same color scale as above). Data from the left hemispheres of 4 individual subjects are shown. (C) The response to
different types of motion stimulus, averaged across 9 subjects, in MTG (left) and medial fusiform (right). The dark line in each graph
shows the response to single presentations of each stimulus relative to fixation baseline, with the thin dashed lines illustrating one SE
above and below the mean. The light gray bars overlaid on the graph illustrate the 2.5 second duration of each stimulus, followed by the
slow blood-oxygenation level dependent response to the stimulus (total duration of each response15 seconds). Stimulus categories are
illustrated with sample stimuli underneath each response: static human, moving video human, static tool, moving video tool. Red arrows
(not present in actual stimuli) depict motion direction.



hamme hammering) and human actors performing
common whole body movements (e.g., jumping
jacks, sitting down). Digital editing techniques were
used to create tool videos that showed tools moving
naturally without a visible hand or arm manipulating
them. This permitted an experiment that purely
dissociated the response to either non-biological or
biological moving stimuli (for details, see
Beauchamp et al., 2002). One difficulty with
complex stimuli is that it is difficult, if not
impossible, to control all of the differences in low-
level visual features (such as speed of motion)
between stimulus categories. To circumvent this
problem, many exemplars from each category were
used (28 different tool and human motions) filmed
from five different viewpoints on an equiluminant
gray background to yield 140 unique stimuli per
object category. Because each stimulus category
contained a variety of movements of different speeds
and directions (hammers hammer quickly while
water pitchers pour slowly; jumping jacks are rapid
while sitting motions are slower) between-category
differences would be unlikely to reflect simple
differences in the speed or direction of movement.

A series of experiments were performed, using
a variety of designs (block and rapid event-related)
and tasks (delayed march-to-sample, object
categorization, motion-type classification). In each
experiment, category-related dissociations were
observed in lateral and ventral temporal regions
(Figure 1A). Consistent with the studies reviewed
above, in lateral temporal cortex, MTG preferred
tool stimuli while STS preferred human stimuli. In
ventral temporal cortex, medial fusiform preferred
tools while lateral fusiform preferred humans.
Visual area MT straddled the boundary between
tool and human preferring cortex, and showed on
average no preference for either category of objects
(Figure 1B). Interestingly, MT preferred both types
of meaningful stimuli (humans and tools) to simple
moving gratings (the standard stimulus used to
localize MT) emphasizing the potency of object
motion in evoking neuronal responses from lateral
temporal cortex.

Having replicated the expected category-related
differences in lateral and ventral temporal cortex,
we then addressed the central question: is MTG
selective for tool motion? As predicted, MTG
showed significantly larger responses to moving
than static images of tools (Figure 1C). Importantly,
medial fusiform showed no difference in response
to moving and static tools (Figure 1C). This serves
as a negative control, demonstrating that the larger
response observed in MTG for moving stimuli was
not due to a non-specific effect of visual attention or
arousal on the entire visual cortex. These results
provide strong support for the claim that MTG
codes some aspect of tool motion, while medial
fusiform codes some aspect of tool form. While
these studies used behavioral tasks to equate
difficulty across conditions, previous studies had

demonstrated that activation is observed in MTG
and fusiform even for passive viewing of stimuli
(Chao et al., 1999), suggesting that motion and form
information is automatically accessed whenever
tools are viewed.

A critical issue was to characterize the motion
properties to which MTG was responsive.
Assuming that access to knowledge of its up-and-
down motion is important for identifying a
hammer, it follows that neurons in MTG should be
sensitive to this type of motion. A simple quality
shared by most tool motions is that they are simple
translations that take place without articulation.
That is, hammers, saws, pencils, utensils, and other
tools move with different trajectories, but do not
change shape as they move. This is in sharp
contrast to animate biological objects, which move
with many degrees of articulation as limbs and
digits shift about their joints.

To study whether specific motion properties give
rise to tool-related activity in MTG, it is necessary to
separate the motion pattern of the stimulus from the
object form. One approach is simply to create
artificial unarticulated motion vectors and apply
them to tools and bodies. If MTG prefers
unarticulated motion, then it should respond to
artificial unarticulated motion, while if STS prefers
articulated motions, it should show weaker responses
to biological forms moving in an unarticulated way.
This was exactly the result that was observed (Figure
2A) (for details, see Beauchamp et al., 2003). The
stimuli were equally novel or artificial – neither saws
nor bodies are normally observed rotating about their
center of mass – but MTG responded similarly to
typical and artificial unarticulated motions of tools,
while STS preferred articulated to unarticulated
motions of bodies.

One confound in this experiment is that in both
cases, the visual form of the preferred category was
present (tools for MTG and bodies for STS).
Therefore, in the next experiment, Johansson (1977)
point light displays were created (Figure 2B). In
these displays the complex form of the original
object was replaced with a much sparser display
containing 5-10 points whose trajectories matched
the motion of the corresponding real object. The
visual system is able to extract a remarkable amount
of information from these displays (Johansson,
1977). The advantage of point-light displays is that
they contain none of the color or form cues of
natural stimuli, allowing an assessment of the
importance of motion in isolation. Using these
stimuli, we found that MTG preferred the
unarticulated motion found in tool point light
displays, while STS preferred the articulated motion
found in human point light displays (Figure 2B).
Interestingly, the response of MTG to point light
displays was as large as the response to real tool
stimuli, highlighting the importance of motion
properties to MTG responses. In contrast, the
medial fusiform showed a strong preference for real
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compared to point light displays (Figure 2B),
supporting the idea that this region encodes the
form and color of tools, but not their motion.
Nevertheless, although ventral temporal regions
responded weakly to the impoverished point light
displays, category-related responses were observed.
Specifically, the medial fusiform showed a greater
response to point light displays of moving tools than
moving humans. This finding underscores the
critical point that responses in these regions are
associated with what the stimulus is interpreted to
be, not solely with its physical characteristics (for
evidence of category-related responses in lateral and
ventral temporal cortex in response to moving
geometric forms interpreted as depicting either
social or mechanical events and interactions, see
Martin and Weisberg, 2003).

These findings suggest a simple neuronal
architecture that could give rise to the observed
fMRI results (Figure 3). Motion-sensitive neurons
in V1 and early stages of MT respond to specific
parts of the visual field. These neurons have
specific preferred directions which are oriented in a
columnar fashion (Figure 3A; Albright et al.,
1984). If neurons that encode similar directions in
adjacent parts of the visual field projected to MTG,
this would produce maximal responses for objects
that move in an unarticulated way (Figure 3B).
Conversely, biological movements in which
different limbs move in different directions would
evoke only weak activity in MTG (Figure 3C).
While this speculative proposal is only a cartoon
sketch that does not capture the complex feed-
forward and feedback organization of visual cortex
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Fig. 2 – Average responses to different tool and human stimuli. Locations of active regions and time series conventions shown in
Figure 1. (A) Average responses in MTG (left) and STS (right) to single 2.5 second presentations (indicated by gray bars) of
unarticulated tools, humans performing articulated whole body movements, artificial unarticulated tools, and artificial unarticulated
humans. (B) Responses in MTG (left) and medial fusiform (right) to video clips of moving humans performing whole body movements,
Johansson (1977) point-light displays of humans performing the same movements, video tools and point-light tools.

A. Real vs. Artificial

B. Real vs. Point Light



(as well as the many other receptive field
properties of MT neurons) it provides an
illustration of how relatively low-level receptive
field properties could produce the high-level
category related activity observed in visual cortex.

FUTURE AVENUES OF EXPLORATION

The findings reviewed here add to an increasing
body of literature on the neural systems that mediate

perceiving and knowing about object categories.
Functional neuroimaging reveals that, like all
categories of objects tested to date, information
about tools is represented in a distributed network.
The sensory-motor model provides a framework for
understanding these distributed activations. Our
results reveal that in temporal lobe, MTG is
particularly responsive to the type of motion – rigid,
unarticulated motion – that is typical of manmade,
manipulable objects. More generally, MTG,
especially in the left hemisphere, is also activated
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Fig. 3 – A simple model capable of generating preferential responses in MTG to the unarticulated movements typical of tools. (A) A
visual hemifield (location of the fovea indicated by star). Area MT is organized into territories containing neurons that respond to different
parts of the visual field (colored lines). Within each territory, columns of neurons (black circles) respond preferentially to motion in a given
direction (arrows indicate preferred direction of motion). Gray curved lines illustrate a hypothetical connection scheme in which neurons
that represent adjacent parts of the visual field and have the same preferred directions co-project from area MT to MTG. (B) When an
unarticulated tool stimulus, such as a hammer, is presented, neighboring territories in MT that prefer the same direction of motion are co-
active, projecting to MTG and leading to increased activity (black oval). (C) For an articulated stimulus, such as a moving human,
neighboring territories in area MT with the same preferred direction are not co-active, leading to a weaker response in MTG (gray oval).



by a variety of conceptual processing tasks
involving tools and their associated actions, and
damage to this region results in impaired naming of
tools and impaired knowledge of their actions.
These findings provide compelling evidence that
this region is critical for both perceiving and
knowing about the motion characteristics of tools.

A number of important questions remain to be
addressed. First, although we have highlighted the
specialized processing and representational
characteristics of the brain regions engaged by tools
(especially MTG) little is known about how these
disparate representations are integrated. A promising
avenue of exploration is to study how closely
intertwined representations from different
modalities – such as the visual and tactile domains –
are integrated (Binkofski et al., 2004; Goldenberg et
al., 2004; Holmes et al., 2004; Làdavas and Farnè,
2004). Our attempt to address this issue has
revealed that auditory-visual multisensory
integration about tools may be dependent on an
associative region located in lateral temporal cortex
superior and anterior to MTG (Beauchamp et al.,
2004a, 2004b). Multisensory responses in lateral
temporal cortex appear to be organized by modality,
but not necessarily by conceptual category. The
precise relationship between category-related and
modality-related organization remain to be
determined. A related question is the role of non-
visual responses to tools in MTG. If motion
properties are critical for identifying tools, and if
activity in MTG is the neural substrate that
represents these motion properties, then activity in
MTG may be necessary for perceiving tools,
whether they are presented in the visual or auditory
modality. A direct test of this prediction suggests
that, in fact, MTG does respond to tool-associated
sounds (Lewis et al., 2004; Yang et al., 2005).
Another important question is the extent to which
the motion properties represented in MTG are
selective for tools because their motion is a critical
property for determining their function, or responds
to any manmade object that can be manipulated,
regardless of the relationship between its associated
motion and its function. For example, motion and
manual manipulation is involved in tying a necktie
or using a toaster, but their movement and motions
characteristics are not relevant for the concept of a
tie or a toaster. On-going studies in our laboratory
are exploring this issue.
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