
1

Genome Dreaming
Akshay Maheshwari, Bohan Wu, and Oğuz H. Elibol

F

Abstract—We investigate and build the framework required to generate
or “dream” of genomes that encode novel organisms. Importantly, we
find that developing methods to validate the generated sequences is as
important as building a good model to realize this task due to the lack of
methods capable of interpreting and evaluating a generated sequence.
We report on our results in building and optimizing a generative model
(using Recurrent Neural Networks) and novel validation and visualization
techniques that enable model evaluation and unsupervised discovery
and comparison of gene properties to form a testable hypothesis for the
generated sequence.

1 INTRODUCTION

The engineering of biological organisms is limited by a
lack of ability to rationally design DNA that functions in
a predictable and desirable way. Synthetic biologists have
attempted to overcome this over the last two decades by
creating standardized genetic components with quantified
dynamics that can be composed into genetic circuits [1].
This has led to a revolution in the engineering of biological
organisms with applications ranging from memory storage
and computation to environment and medicine. However,
the scale and potential of these circuits is largely limited
by a lack of understanding of genes and their complex
interactions. To eventually enable the specification of genome-
scale DNA and consequently the precise, large-scale forward
engineering of entire novel organisms with human-desired
functions, substantially greater integration of latent genome
properties and intra-genome dependencies are needed in the
design of genetic sequences.

Here we establish a preliminary framework for such an
approach within the subspace of prokaryotic organisms. We
focus on two tasks: 1) creating a model that captures the
properties of prokaryotic genomes in an unbiased way and
that can be used to generate new genetic sequences with
predictable properties; and 2) interpreting and evaluating
learned representations of genomes and generated sequences.
For the first task, we trained nucleotide-level generative
recurrent neural networks (RNNs) on whole-genomes of
specific prokaryotic phyla and generated putative nucleotide
sequences with the length of a typical gene. We assess the
performance of the RNN models by evaluating their ability
to accurately classify the phylogeny of an unseen genome

• akshaym@standord.edu, bohanwu@stanford.edu, elibol@stanford.edu

We would like to thank the following people and others for their valuable
discussions and guidance: Dr. Drew Endy, Dr. Anshul Kundaje, and Dr.
James Zou; Namrata Anand, Jesse Zhang, Bo Wang, Volodymyr Kuleshov, and
members of the Endy lab

and compare this performance to that of a baseline n-gram
model. For the second task, we analyze and cluster labeled
genes from Escherichia coli based on their hidden layer
representations, which are generated by running sequences
through an Escherichia-trained RNN model.

Most of the recent work in computational genomics fo-
cuses on discriminative models to classify particular features
of the genome, such as transcription factor binding regions,
and ab initio gene predictions [2], [3]. In contrast, this work
investigates the feasibility of something different – learning
a generative model capable of capturing genome properties
with the goal of enabling the design of genetic sequences
with desired characteristics.

2 DATA PREPROCESSING AND STATISTICS

We chose to use prokaryotic organisms because of their
relatively small and simple genomes. One curated resource
for genome sequences is the Kegg Database, which contains
FASTA-format files with (a) complete unannotated prokary-
otic genomes and (b) lists of annotated coding-sequences
for each prokaryotic genome. We extracted all 4131 files
corresponding to (a) and 4131 files corresponding to (b) and
created json files that structure the genomes and their genes
into proper phylogenetic categories with additional sequence
metadata, such as location and orientation of genes. For
simplicity, we removed organisms that contained multiple
chromosomes or extrachromosomal DNA from the dataset.
The median length of genomes in this subset was 2780346
nucleotides and the median number of genes per genome
was 2558 genes/genome (Figure 4).

(a) Number of genes per genome (b) Genome length

Fig. 1. Statistical properties of the prokaryotic genome data

3 MODELING

Creating a novel sequence that is valid requires a robust
generative model that can capture latent properties of



2

genomes. We use recurrent neural networks for this task
and validate their abilities by gauging their performance
in learning taxa-specific properties and by comparing this
performance against the performance of a baseline n-gram
model.

3.1 Deep Recurrent Neural Networks
Recurrent neural networks (RNNs) and their variations, such
as Gated Recurrent Units (GRUs) and Long Short Term
Memory networks (LSTMs), have become the standard for
modeling and generating sequences because of their ability to
capture context-dependent long-range sequence interactions.
We trained nucleotide-level LSTMs on the genomes of
prokaryotes within specific taxa with the goal of generating
novel genomes that could encode an organism representative
of the taxa the model was trained on.

We have set up a base level model as shown in Figure 2.
A sequence unroll length of 50 was used for our RNN model.

Fig. 2. Diagram for the base level recurrent neural network model used
in this work

Inputs to each LSTM time block was a base embedding
vector (R4). The number of hidden layers was limited to
2 or 3 depending on the experiment. Also the size of the
hidden layer vector was chosen as either 128, 512 or 1024
depending on the experiments as explained later. The correct
base output at each time step was predicted using a softmax
layer (equation 1 ) connected to the final hidden layer h.

P (y = j|h) = eh
Twj∑4

k=1 e
hTwk

(1)

The network was trained by back-propagating the cross
entropy error for the correct target base, allowing the model
to learn a genome sequence model.

To validate that the model has learned genome and taxa-
specific properties, we optimized and evaluated our model
using two different methods: first, by using a validation
set of whole genomes belonging to the specific taxa from
which training genomes were derived; and second, by using
an intragenome training-testing split, where 90% of a given
genome was used in the training set and 10% in the validation
set. We minimized the average cross entropy loss of genomes
(equation 2) and used perplexity (equation 3) as a measure
of model performance:

loss = − 1

N

N∑
i=1

ln ptargeti (2)

perplexity = e−
1
N

∑N
i=1 ln ptargeti = eloss (3)

After experimenting with different model parameters
we found that the model with 1024 neurons and 3 hidden
layers achieved the best test perplexity with the intragenome
training-test split. For these experiments multiple Azure and
Amazon machines with GPUs were deployed which ran for
multiple days (for complex models and large data). Figure 3
shows the model optimization and tuning process. We first
started with a moderately complex model consisting of 2
hidden layers and a hidden vector size of 128 and trained it
on a single genome (Figure 3 a and b). The model capacity
was then increased to 512 or 1024 vector size while keeping
the input data the same. This resulted in overfitting the data
(Figure 3 c and d) relatively quickly as indicated by the
validation curve diverging from the training curve. Next,
more data was introduced to the model (7x genomes from
the same family) to avoid over-fitting (Figure 3 e and f).
We were able to reduce average validation perplexity to 3.5
by tuning the model. We have observed that using a 10%
validation set may give overly optimistic results and result in
not generalizing to other genomes, further highlighting the
importance of choosing an appropriate validation and test
set for the task in hand. Because we are mainly concerned
about learning a model that will generalize to all genomes,
we conclude that using a whole genome validation set makes
more sense.

We next evaluated the ability of the model to cap-
ture genus-specific properties while still retaining the abil-
ity to generalize, by measuring perplexity of several Es-
cherichia and Staphyloccus genomes fed forward into a
tuned, Escherichia-trained RNN and a tuned, Staphylococcus-
trained RNN (Table 1).

TABLE 1
Perplexities obtained for two different models, one trained on

Escherichia genomes (ECO, ENA, ELC, ELX, ECOJ, EFE, ECOL) and
the other on Streptococcus genomes (SSIF, SHU, SEPP, SAUM, SAO,

SAU, SAUT). Each row is a genome that the model has not seen, but is
from the same family of either Escherichia or Streptococcus. For

reference - since there are four possible nucleotides, the perplexity of a
model that does random guessing would return a perplexity of 4.

Escherichia Model Streptococcus Model
ECL (E) 3.59998 4.17365
ESO (E) 3.62222 4.1728
EBL (E) 3.56904 4.17352
EAL (E) 3.63504 4.15488
SAH (S) 3.67812 3.42402
SXY (S) 3.68177 3.47255

SEQO (S) 3.68418 3.47396
SAUR (S) 3.67919 3.43899

Based on these results, we see that the model generalizes
better for the genomes that are in the same family than for
genomes in a different family.

3.2 N-gram model

For baseline comparison, we used a (1-5)-gram representation
of genomes. The (1-5)-gram model characterizes genomes
based on the frequency of all possible subsequences of
at most 5 nucleotides in length (a 45 + 44 + 43 + 42 + 4
feature embedding). An SVM using the (1-5)-gram genome
representation was able to achieve 89% classification accuracy
of Staphylococcus, Escherichia, and Mycoplasma; and was



3

(a) Model Capacity: Medium
(128x2), Training Data: Medium
(1 genome), Validation Data: dif-
ferent genome

(b) Model Capacity: Medium
(128x2), Training Data: Medium
(1 genome), Validation Data:
Holdout 10%

(c) Model Capacity: High
(512x3), Training Data: Medium
(1 genome), Validation Data:
different genome

(d) Model Capacity: High
(512x3), Training Data: Medium
(1 genome), Validation Data:
Holdout 10%

(e) Model Capacity: High
(512x3), Training Data: High
(7 genomes), Validation Data:
different genome

(f) Model Capacity: High
(1024x3), Training Data: High
(7 genomes), Validation Data:
Holdout 10%

Fig. 3. Models with varying capacity and varying amount of data (rows)
and using different validation sets (columns). Left column: separate
genome from the same family as a validation set. Right column: 10%
holdout of the genomes as a validation set. Top row: medium capacity
model with single genome training data. Middle row: High capacity model
with single genome training data. Bottom Row: High capacity model with
7 genomes training data

able to achieve 34% classification accuracy of alpha, beta,
gamma, gamma-enterobacteriae, delta, epsilon, and “other”
members of the Protobacteria phylum.

3.3 Sequence Generation

Finally, we used the Escherichia-trained RNNs to generate
sequences 1000-2000 nucleotides in length. These sequences
were constrained to start with a start codon and only contain
a stop codon at its end to make them gene-like. Properties of
the generated proteins from the generated genes are shown
below in Figure 4 (using Open Predict Protein [4]). During
generation, instead of selecting the base with the highest
probability, we selected a base with a probability that is
proportional to the probability of the base to allow some
variance in the generated sequences.

Fig. 4. Properties of the protein from the generated gene

4 VISUALIZATION AND VALIDATION

Verifying the quality and functionality of a generated
sequence is difficult because no standard in silico gene
simulator or compiler exists. Here we establish a series of
methods to evaluate the quality, and properties of generated
sequences.

4.1 Information Extraction from Hidden Layers
We hypothesized that the final hidden layer in trained RNNs
should contain high-level latent genome properties that can
be used to infer the properties of unlabeled sequences. The
final hidden layer is used to generate softmax outputs to
predict the next nucleotide in a sequence and so should con-
tain information about the properties of sequences sufficient
to perform this prediction task. Indeed, the ability of final
hidden layers to capture high-level representations of the
information they were trained on has been shown in a variety
of image and language tasks [5].

4.1.1 Hidden Layer Matrix
Hidden layer activations change each time a new nucleotide
is passed through the model, so we collected hidden layer
activation vectors (Rh where h is the size of hidden layer,
128 for medium capacity and 512 or 1024 for high capacity
networks) for all nucleotides, resulting in a matrix of all
hidden layers (Rg×h where g is the number of bases in the
specific genome). Thus there is a unique matrix for each gene
or sequence.

4.1.2 Sequence Embedding
We next created an embedding of gene properties using the
extracted hidden layer matrix described above. First, we
used t-Distributed Stochastic Neighbor Embedding (tSNE)
[6] to reduce the dimensions of hidden layer activations
of subsequences corresponding to labeled genes in E. coli
from g to 2 resulting in a Rg×2 matrix for each gene. Thus,
now each gene can be represented as a series of points (of
length g) on a 2 dimensional surface (Figure 5 a). Taking all
of the points for all genes, we then clustered these points
using a Mixture of Gaussians model (100 gaussians with
independent covariance matrices). Unique points for the
gene ddlA and the Mixture of Gaussians likelihood contours
from clustering are shown in Figure 5. Each gene forms a
unique representation occupying certain clusters.

We hypothesized that each of the Gaussians in the
mixture of Gaussians model captured specific properties
of genes. These properties were quantified by individually
projecting each of the reduced hidden layer representations
of genes (Rg×2) onto the 100 mixture of Gaussians model



4

(a) ddlA from E. coli

(b) Sequence generated by the
model

(c) random sequence of length
1372

Fig. 5. Reduced dimension hidden layer representation for different
genes overlaid with the Mixture of Gaussians models representing all the
clusters formed with the genes. Each point represents a hidden layer in
time for the forward pass of the specific sequence

and then measuring the effective proportion of each gene’s
hidden layers that fell into each Gaussian (equation 4).

for each cluster j :
1

g

g∑
i=1

Pij (4)

This resulted in a 100-dimensional embedded representa-
tion of genes (Figure 6). The generation of this embedding
is similar to forming a single vector using an encoder-
decoder sequence-to-sequence model [7]. However, while in
these sequence-to-sequence models long-term information
is largely lost, using the novel method presented here maxi-
mizes retention of long-term information in the hidden layers
prior to dimensionality reduction. This theoretically leads to
better performance at the cost of being more computationally
expensive.

4.1.3 Sequence Clustering

We compared the properties of genes using heatmaps of
100-dimensional vector gene embeddings (Figure 6). These
heatmaps allow for easy understanding of how model-
generated sequences relate to different genes and to random
sequences.

(a) Embedding represenation
for all genes

(b) Zoomed version for clarity focusing
on the first 20 properties of generated
genes versus real E. coli genes

Fig. 6. Embedding representation of each gene in E.coli, along with the
generated sequences and a random sequence. Each row in the figure
is the embedding for a specific gene, and each column represents a
property of a gene found in an unsupervised fashion. Red signifies the
lack of the property and green signifies strong presence of the property

Embedded representations of genes can also further be
visualized using tSNE to interpret the closeness of gene
properties (Figure 7). Here, genes that correspond to different
organism functions have different colors. The significant
overlap of clusters of genes with different functions could
be due to overlapping structure or function between the
different classes of genes. Since more separation of genes with
different function was achieved with the RNN model than
with the baseline 5-gram model, we conclude that the RNN
embedding used here likely captures important properties of
genes beyond nucleotide frequency.

It is important to note that the clusters do detect that the
generated sequences are perhaps not functional, because they
are outside of the clusters formed by real genes. This may
mean that the model is producing non-coding sequences,
and we would have to improve the model to generate higher
quality sequences. Given that we have optimized the model,
there may be a need to try a different model that captures
long term dependencies better than an LSTM.

5 DISCUSSION

We described a pipeline to create genome and gene property
embeddings, generate novel sequences, and visualize differ-
ences between genes and generated sequences. While the
sequences we generated do not fall within the space occupied
by real genes in our tSNE visualization of embedded gene
representations, the pipeline is highly modular, and better
models can be engineered to replace the LSTM used here
and generate better sequences. Importantly, the ability to
describe the properties of a sequence and evaluate its
legitimacy is in itself substantial and provides a way to
analyze newly sequenced and unlabeled genes and genomes
as well as artificial sequences generated by any means.
Additionally, the methods used here capture a sufficiently
good representation of genomes to predict the taxonomy
of unlabeled genomes, indicating the potential to design
sequences that have properties similar to genomes in desired
taxonomic groups.

Having established this baseline framework, now the
community is in a position to iterate quickly between forming



5

(a) Similarity of genes based on the formed gene
embeddings

(b) Similarity of genes based on 5-gram representation
of genes

Fig. 7. Comparison of reduced dimension representation of gene embed-
dings and 5-gram representation of genes

better models and evaluating the generated sequence quality.
Having generated a way to predict the gene properties in
an unbiased fashion also provides the opportunity to form
testable hypotheses for experimental work. We also note that
the RNN visualization techniques developed in this work can
be potentially applied to other fields working with RNNs.

6 CONCLUSION AND FUTURE DIRECTIONS

The generative modeling of unannotated genome sequences
presents several unique challenges not typically encountered
in traditional language or vision problems and warrants
discussion.

Firstly, constructing an explicit objective function and
evaluating success is difficult because of the lack of easily
measurable metrics for what a “good” or even functioning
sequence looks like. Surrogates such as secondary structure,
sequence homology, and phylogenetic classification can be
used to create a traversable fitness landscape, but large-scale
functional assays of a variety of sequences and automated in
vitro validation studies are likely necessary to enable better
scoring.

Secondly, genomes are not robust to particular types
of small changes, which can make categorization difficult.
Indeed, a single shift in reading frame or displacement of
a small promoter motif can lead to a nonviable organism.

To ever enable the generation of novel genes or genomes,
further work must be done specifically towards creating
custom models suited for genomics; for example, better
genomics-oriented models could be more rapidly developed
by focusing on low to high level machine code translation
problems that are similar to the genome to function problem
(e.g., machine code is also not robust to particularly small
changes), but are substantially easier to test using a decom-
piler. In this faux-genome setting, models other than LSTMs
such as Generative Adversarial Networks with attention or
Neural Turing Machines, which may be better suited for
genome dreaming than LSTMs, could be rapidly prototyped.

Thirdly, the range and variety of interactions across the
genome is mostly unknown, which can make choosing and
tuning models difficult. Measuring changes in hidden layer
activations across a sequence could be a good way to discover
new relationships within genomes. Tools have recently been
published that do just this [8]. A clear next step to the work
presented here is to demonstrate that the hidden layers
of neural networks trained with unlabeled genomes can
capture human-defined DNA annotations, such as promoters,
ribosome binding sites, terminators, or even operons, and
then explore what unknown motifs the model has learned.

Finally, because current phylogenetic methods take into
account many variables other than whole-genome sequence
similarity into their classification scheme (e.g., phenotype or
16s rRNA sequence similarity), current taxonomic groupings
of prokaryotic organisms are likely not a sufficient standard
by which to evaluate whole-genome predictive tasks. For
example, when using whole genomes as individual samples,
choosing a proper training and test set is difficult because
it’s unclear how related genome sequences are to each other.
One potential way to address this is to reclassify organisms
based only on whole-genome similarity measures.

In sum, these methods can be used for discovering new
genome features, predicting the taxonomy and annotations of
newly sequenced genomes, and designing genetic sequences
with desired properties.

REFERENCES

[1] Drew Endy Barry Canton, Anna Labno. Refinement and standard-
ization of synthetic biological parts and devices.

[2] Xiaohui Xie Daniel Quang. Danq: a hybrid convolutional and
recurrent deep neural network for quantifying the function of dna
sequences.

[3] Matthew T Weirauch Brendan J Frey Babak Alipanahi, Andrew De-
long. Predicting the sequence specificities of dna- and rna-binding
proteins by deep learning.

[4] Guy Yachdav, Edda Kloppmann, Laszlo Kajan, Maximilian Hecht,
Tatyana Goldberg, Tobias Hamp, Peter Hönigschmid, Andrea Schaf-
ferhans, Manfred Roos, Michael Bernhofer, et al. Predictprotein—
an open resource for online prediction of protein structural and
functional features. Nucleic acids research, page gku366, 2014.

[5] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent.
Visualizing higher-layer features of a deep network. Technical Report
1341, University of Montreal, June 2009. Also presented at the ICML
2009 Workshop on Learning Feature Hierarchies, Montréal, Canada.

[6] Geoffrey Hinton Laurens van der Maaten. Visualizing data using
t-sne.

[7] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence
learning with neural networks. CoRR, abs/1409.3215, 2014.

[8] Hendrik Strobelt, Sebastian Gehrmann, Bernd Huber, Hanspeter
Pfister, and Alexander M. Rush. Visual analysis of hidden state
dynamics in recurrent neural networks. CoRR, abs/1606.07461, 2016.


	Introduction
	Data Preprocessing and Statistics
	Modeling
	Deep Recurrent Neural Networks
	N-gram model
	Sequence Generation

	Visualization and Validation
	Information Extraction from Hidden Layers
	Hidden Layer Matrix
	Sequence Embedding
	Sequence clustering


	Discussion
	Conclusion and Future Directions
	References

