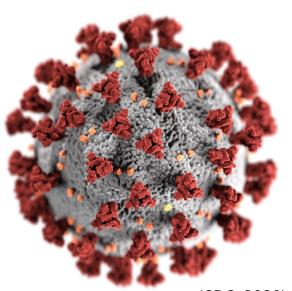
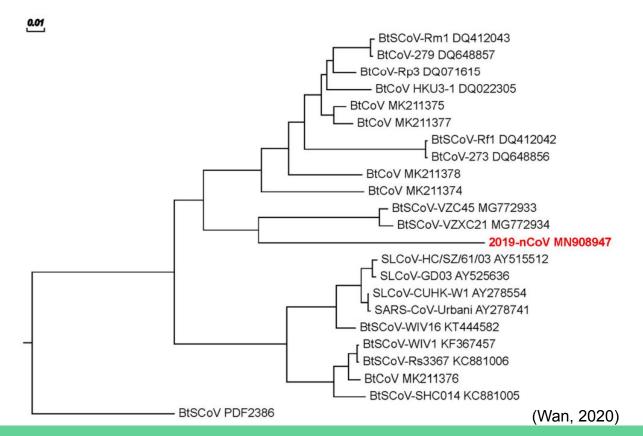
Receptor Recognition by the Novel Coronavirus from Wuhan:an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus

Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of virology, 94(7). DOI: 10.1128/JVI.00127-20.


Maya Paniagua, Drew Cartmel, Christina Dominguez
BIOL 386: Bioinformatics Laboratory
April 16, 2020

Outline

- 2019-nCoV and SARS-CoV present similarities
- 2019-nCoV is most related to the β-genus lineage b bat SARS-like coronaviruses
- SARS-CoV and 2019-nCoV share sequence similarities in their spike proteins
- SARS-CoV and 2019-nCoV spike proteins are 77% similar
- SARS-CoV contains a core structure as well as a receptor binding motif (RBM)
- Mutations in the RBM spike protein affect binding to the host ACE2 protein
- Amino acid positions that enhance viral binding of SARS-CoV to ACE2
- They built a model of 2019-nCoV binding to ACE2 based off of the previous structure
- Five amino acids in ACE2 that are important for spike protein binding
- Optimal Viral Binding Between Civet SARS-CoV RBD and Civet ACE2
- Model of Viral Binding Between 2019-nCoV RBD and Civet ACE2
- Using the information presented, future work could help researchers make predictions and prepare ways to fight the virus


2019-nCoV has many similarities to SARS-CoV

- 2019-nCoV has many similarities to SARS-CoV including:
 - Belonging to β-genus of coronaviruses
 - O Similar symptoms (Wan, 2020)
- 2019-nCoV causes respiratory illness that is spread through respiratory droplets and has unknown animal origin (CDC, 2020)

(CDC, 2020)

2019-nCoV is most related to the β-genus lineage b bat SARS-like coronaviruses

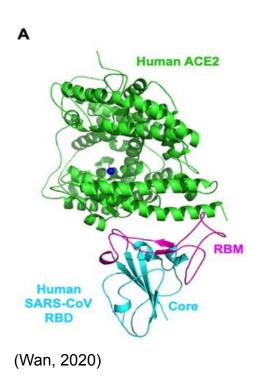
 These other viruses use ACE2 for entry into the cell

SARS-CoV and 2019-nCoV share sequence similarities in their spike proteins

Human-SARS-2002 306 RVVPS GDVVRFPNIT NLCPFGEVFN ATKFPSVYAW ERKKISNCVA DYSVLYNSTF 360 Civet-SARS-2002 306 RVVPS GDVVRFPNIT NLCPFGEVFN ATKFPSVYAW ERKRISNCVA DYSVLYNSTS 360 Bat-SARS-2013 307 RVAPS KEVVRFPNIT NLCPFGEVFN ATTFPSVYAW ERKRISNCVA DYSVLYNSTS 361 2019-nCoV 319 RVOPT ESIVRFPNIT NLCPFGEVFN ATRFASVYAW NRKRISNCVA DYSVLYNSAS 373 Human-SARS-2002 FSTFKCYGVS ATKLNDLCFS NVYADSFVVK GDDVROIAPG OTGVIADYNY KLPDDFMGCV 420 FSTFKCYGVS ATKLNDLCFS NVYADSFVVK GDDVRQIAPG QTGVIADYNY KLPDDFMGCV 420 Civet-SARS-2002 FSTFKCYGVS ATKLNDLCFS NVYADSFVVK GDDVRQIAPG QTGVIADYNY KLPDDFTGCV 421 Bat-SARS-2013 FSTFKCYGVS PTKLNDLCFT NVYADSFVIR GDEVROIAPG OTGKIADYNY KLPDDFTGCV 433 2019-nCoV ****** *** ****** ****** ******* *** *** *** *** Human-SARS-2002 LAWNTRNIDA TSTGNYNYKY RYLRHGKLRP FERDISNVPF SPDGKPCTP-P ALNCYWPLND 480 Civet-SARS-2002 LAWNTRNIDA TSTGNYNYKY RYLRHGKLRP FERDISNVPF SPDGKPCTP-P ALNCYWPLKD 480 Bat-SARS-2013 LAWNTRNIDA TOTGNYNYKY RSLRHGKLRP FERDISNVPF SPDGKPCTP-P AFNCYWPLND 481 2019-nCoV IAWNSNNLDS KVGGNYNYLY RLFRKSNLKP FERDISTEIY QAGSTPCNGVE GFNCYFPLQS 494 .:***:**:. YGFYTTTGIG YOPYRVVVLS FELLNAPATV CGPKL 515 Human-SARS-2002 Civet-SARS-2002 YGFYTTSGIG YQPYRVVVLS FELLNAPATV CGPKL 515 Bat-SARS-2013 YGFYITNGIG YOPYRVVVLS FELLNAPATV CGPKL 516 YGFOPTNGVG YOPYRVVVLS FELLHAPATV CGPKK 529 2019-nCoV

 Suggest the possibility they share the same receptor

SARS-CoV and 2019-nCoV spike proteins are 77% similar


В

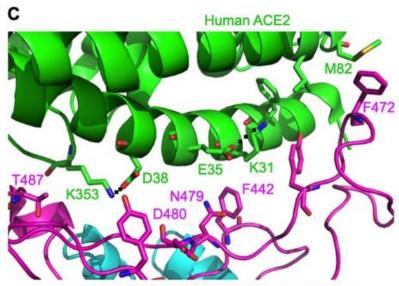
Spike / RBD / RBM	SARS-human	SARS-civet	SARS-bat	2019-nCoV
SARS-human	100% / 100% / 100%			
SARS-civet	98.12% / 98.10% / 97.18%	100% / 100% / 100%		
SARS-bat	92.33% / 94.29% / 92.96%	92.75% / 94.76% / 91.55%	100% / 100% / 100%	
2019-nCoV	76.04% / 73.33% / 50.00%	76.78% / 74.29% / 50.00%	77.50% / 75.71% / 52.78%	100% / 100% / 100%

Spike /RBD /RBM	MERS-human
HKU4-bat	67.04%
	/57.69%
	/40.79%

- MERS and HKU4 have even fewer similarities but share the same receptor
- Sequence similarities strongly suggest SARS-CoV and 2019-nCoV share the same ACE2 receptor

SARS-CoV contains a core structure as well as a receptor binding motif (RBM)

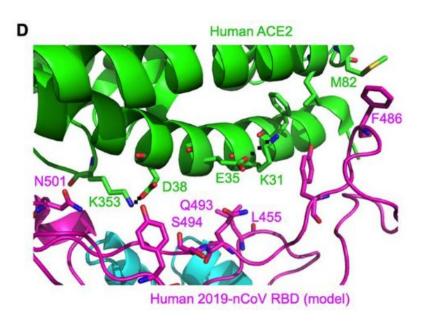
RBM binds to the human ACE2 receptor


 Does 2019-nCoV bind to ACE2 in the same way?

Mutations in the RBM spike protein affect binding to the host ACE2 protein

Virus	Year	442	472	479	480	487
SARS - human	2002	Υ	L	N	D	Т
SARS - civet	2002	Y	L	K	D	S
SARS - human/civet	2003	Υ	Р	N	G	S
SARS - civet	2005	Υ	Р	R	G	S
SARS - human	2008	F	F	N	D	S
Viral adaption to human ACE2		F > Y	F > L > P	N = R >>> K	D > G	T >>> S
Optimized - human	In vitro design	F	F	N	D	Т
Viral adaptation to civet ACE2		Y > F	P = L > F	R > K = N	G > D	T>S
Optimized - civet	In vitro design	Y	Р	R	G	Т
SARS - bat	2013	S	F	N	D	N
2019-nCoV – human	2019	L (455)	F (486)	Q (493)	S (494)	N (501)

- Each amino acid number on the top row represents a different residue
- Red coloring indicates the differences

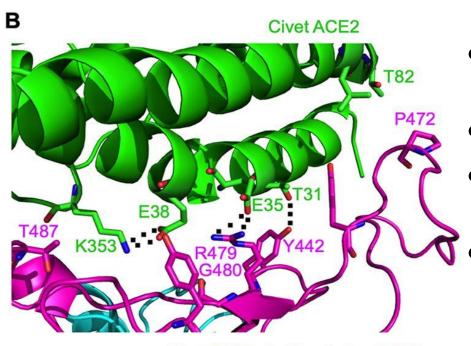

Amino acid positions that enhance viral binding of SARS-CoV to ACE2

Human SARS-CoV-optimized RBD

- Receptor binding motif of Human SARS-Cov (magenta) binding to Human ACE2 (green)
- Specific amino acids at the 442, 472, 479, 480, and 487 positions enhance viral binding to ACE2
- When an RBD contains all of these residues, it will bind with high affinity allowing for the virus to enter human cells with high efficiency

They built a model of 2019-nCoV binding to ACE2 based off of the previous structure

- Receptor binding motif of Human 2019-nCoV (magenta) binding to Human ACE2 (green)
- Specific amino acids at the positions 455, 486, 493, 494, and 501 enhance the viral binding to ACE2


Five amino acids in ACE2 that are important for spike protein binding

Α

ACE2	31	35	38	82	353
Human	K	E	D	М	K
Civet	Т	E	E	Т	K
Bat	K	K	D	N	K
Mouse	N	E	D	S	Н
Rat	K	E	D	N	Н
Pig	K	E	D	Т	K
Ferret	K	E	Е	Т	K
Cat	K	E	Е	Т	K
Orangutan	K	E	D	М	K
Monkey	K	E	D	М	K

 It is predicted that it would bind to all of these species except mice and rat

Optimal Viral Binding Between Civet SARS-CoV RBD and Civet ACE2

- Glu35 to Arg 479 is an ionic bond
- E38 to K353 is an ionic bond
- T31 to Y442 is a hydrogen bond
- Unfavorable interactions do not occur

Model of Viral Binding Between 2019-nCoV RBD and Civet ACE2

Civet ACE2 F486 Q493

- Unfavorable interactions occur
- 2019-nCoV has not adapted to binding efficiently to ACE2
- But ACE2 is still likely used

(Wan, 2020)

Human 2019-nCoV RBD (model)

Discussion

- 2019-nCoV shares sequence, structural, and binding similarities with SARS-CoV
- The authors used the same predictive framework to study 2019-nCoV as they did with SARS-CoV in 2003
- The main limitation of this study was that the authors do not actually know the structure yet
- Using the information presented, future work could help researchers make predictions and prepare ways to fight the virus

Summary

- 2019-nCoV and SARS-CoV present similarities
- 2019-nCoV is most related to the β-genus lineage b bat SARS-like coronaviruses
- SARS-CoV and 2019-nCoV share sequence similarities in their spike proteins
- SARS-CoV and 2019-nCoV spike proteins are 77% similar
- SARS-CoV contains a core structure as well as a receptor binding motif (RBM)
- Mutations in the RBM spike protein affect binding to the host ACE2 protein
- Amino acid positions that enhance viral binding of SARS-CoV to ACE2
- They built a model of 2019-nCoV binding to ACE2 based off of the previous structure
- Five amino acids in ACE2 that are important for spike protein binding
- Optimal Viral Binding Between Civet SARS-CoV RBD and Civet ACE2
- Model of Viral Binding Between 2019-nCoV RBD and Civet ACE2
- Using the information presented, future work could help researchers make predictions and prepare ways to fight the virus

References

CDC. (2020). Know the facts about coronavirus disease 2019. Center for Disease Control.https://www.cdc.gov/coronavirus/2019-ncov/daily-life-coping/share-facts.ht ml.

Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of virology, 94(7). DOI: 10.1128/JVI.00127-20.

Thank you to Dr. Dahlquist, Loyola

Marymount University Biology Department,

and the BIOL 368 class!