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A B S T R A C T

Purpose
This review assesses the current state of knowledge regarding preclinical and clinical pharmacol-
ogy for brain tumor chemotherapy and evaluates relevant brain tumor pharmacology studies
before October 2006.

Results
Chemotherapeutic regimens in brain tumor therapy have often emerged from empirical clinical
studies with retrospective pharmacologic explanations, rather than prospective trials of rational
chemotherapeutic approaches. Brain tumors are largely composed of CNS metastases of
systemic cancers. Primary brain tumors, such as glioblastoma multiforme or primary CNS
lymphomas, are less common. Few of these tumors have well-defined optimal treatment. Brain
tumors are protected from systemic chemotherapy by the blood-brain barrier (BBB) and by intrinsic
properties of the tumors. Pharmacologic studies of delivery of conventional chemotherapeutics
and novel therapeutics showing actual tumor concentrations and biologic effect are lacking.

Conclusion
In this article, we review drug delivery across the BBB, as well as blood-tumor and –cerebrospinal
fluid (CSF) barriers, and mechanisms to increase drug delivery to CNS and CSF tumors. Because
of the difficulty in treating CNS tumors, innovative treatments and alternative delivery techniques
involving brain/cord capillaries, choroid plexus, and CSF are needed.
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INTRODUCTION

Chemotherapeutic drug concentrations within the
CNS depend on multiple factors, including the per-
meability of the blood-brain barrier (BBB) to the
chemotherapeutic agent, the extent to which the
drug is actively transported out of the brain, and
the drug volume of distribution in the brain paren-
chyma. Brain distribution incorporates cellular
uptake, binding to lipids and proteins, and accumu-
lation in cellular subcompartments and organelles.
The BBB limits CNS delivery of many common chem-
otherapeutic agents.1,2 The unidirectional transfer
coefficient (Kin) is a quantitative measure of the abil-
ity of a drug to pass from plasma into brain. Kin is
largely determined by lipid solubility because agents
must first dissolve in the lipid membranes of the
BBB to cross the BBB by lipid-mediated diffusion.
Figure 1 plots Kin versus the octanol/water distribu-
tion coefficient, a measure of solute lipophilicity.3

The best-fit regression line for 20 reference perme-
ability markers, which bind minimally to plasma
proteins and cross the BBB by passive diffusion, is

linear over 5 orders of magnitude (Fig 1). Con-
versely, Kin values for a variety of anticancer drugs
fall significantly below the line predicted for BBB
passive diffusion. For many agents, the deficit ex-
ceeds 3 orders of magnitude (ie, � 0.1%). Factors
contributing to poor chemotherapeutic uptake
across the BBB include plasma protein binding, sol-
ute molecular weight, and active efflux transport.

Plasma protein binding. Many chemothera-
peutic agents (eg, chlorambucil, etoposide, melpha-
lan, vincristine, and paclitaxel) bind more than 90%
to plasma proteins, which reduces the free fraction
of drug in plasma that is available to cross the BBB.
Kin for these agents is directly proportional to the
plasma-free fraction.4 For chlorambucil, which is
99% bound, protein binding lowers brain uptake by
2 orders of magnitude.

Solute molecular weight. The BBB blocks
transvascular leakage of most molecules larger than
180 daltons.1,2 Many chemotherapeutics exceed 400
daltons of molecular weight (eg, vincristine, vinblas-
tine, paclitaxel, and etoposide).

Active efflux transport. The BBB expresses
high levels of drug efflux pumps (eg, P-glycoprotein,
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breast cancer–resistance protein, and other multiple drug-
resistance transporters), which actively remove chemotherapeutic
drugs (eg, paclitaxel, vincristine, vinblastine, doxorubicin, and
etoposide) from the brain. Inhibition of active efflux can increase
brain uptake Kin by two- to 50-fold5 and may improve the clinical
efficacy of substrate drugs.6 The brain distribution of the tyrosine
kinase inhibitor imatinib is reduced by active efflux via
P-glycoprotein, which may be implicated in rare cases of CNS
relapse in chronic myelogenous leukemia.7 Delivery of taxanes into
the brain may be improved by coadministration of inhibitors of
P-glycoprotein; however, this also may enhance neurotoxicity.8

Patupilone, an epothilone with novel taxane-like microtubule-
stabilizing activity, is resistant to P-glycoprotein–mediated efflux
of taxanes. This agent penetrates the brain in mouse models and is
currently in clinical trials in patients with brain metastases.9

The integrity of the BBB can be compromised in brain tumors.
New vasculature within the tumor is often disordered and highly
permeable, but infiltrating tumor makes use of the existing brain
vasculature with a largely intact BBB. The magnitude of tumor
vascular permeability varies within tumors both spatially and tem-
porally, with the greatest permeability elevation in tumor core and
a relatively intact BBB at the proliferating tumor edge (brain adja-
cent to tumor).10

Drug accumulation in a brain tumor is limited even in the pres-
ence of a compromised BBB because of tumor interstitial fluid gradi-
ents. Interstitial fluid pressures can be more than 50 mmHg in
peritumoral areas compared with 2 mmHg in a normal brain.11,12

This high-pressure difference reduces diffusion of drugs into tumor
tissue and enhances diffusional loss to surrounding brain tissue and
out of the cerebrum completely.11,13 Targeting vascular endothelial
growth factor (VEGF) with the monoclonal antibody (mAb) bevaci-
zumab may act to normalize tumor interstitial fluid pressure to in-
crease drug delivery.14

CNS PHARMACOKINETICS OF CHEMOTHERAPEUTIC AGENTS

Tissue concentrations of lipophilic agents are predominantly con-
trolled by plasma protein binding, active efflux transport, and drug
metabolism. Delivery of water-soluble drugs to brain tumors is more
complex, and pharmacokinetic data on this issue are scarce. Table 1
presents the pharmacokinetics of common chemotherapeutic drugs
in the brain and in brain tumors.

Drug concentrations in brain tumors can vary by the route of
delivery. For etoposide, therapeutic concentrations were found in
glioblastomas and astrocytomas after intravenous (IV) delivery, but
concentration decreased with increasing distance from the tumor.23

The etoposide concentration was found to be four times higher after
intra-arterial (IA) administration than IV.22 Route of delivery im-
pacted brain delivery of cisplatin, with IA administration increasing
delivery to glioma two-fold compared with IV administration.18 One
study reported results of brain pharmacokinetics of cytarabine, com-
paring different routes of administration.20 After IV administration, a
diffuse pattern of low drug concentrations was detected throughout
the brain.20 Vincristine and vinblastine penetrate brain tumors poorly
despite their high lipid solubility (Fig 1), even after IA administra-
tion,31 because of efflux pumps. Doxorubicin is not detected in the
brain after IV injection, but it can penetrate the CNS after IA
administration. However, doxorubicin is associated with high rates
of neurotoxicity.21

Methotrexate is the most widely used hydrophilic chemothera-
peutic agent in primary CNS lymphoma (PCNSL), but high doses
must be administered to achieve therapeutic drug concentrations in
the tumor and surrounding brain. Although one early rat study
showed a median brain/serum ratio of 0.2 � 0.12,26 other studies
show orders of magnitude less methotrexate in brain and tumor.27

The steady-state between plasma and extracellular fluid of brain tu-
mors is rapidly reached, but it can be modulated by different routes of
administration. IV bolus administration increases delivery of metho-
trexate to brain extracellular fluid by three-fold compared with slow
IV infusion.27 Methotrexate delivery to CNS is enhanced four- to
seven-fold when administered IA after osmotic BBB disruption
(BBBD) compared with IA administration without BBBD.32

Drug concentration can vary by tumor type. In one study, meta-
static brain tumors showed 2.5-fold higher paclitaxel concentrations
than primary brain tumors.6 Assessing cisplatin delivery in PCNSL,
meningioma, and medulloblastoma, IV cisplatin achieved concentra-
tions in the brain tumor as high as in extra-CNS tumors.16 In contrast,
nontherapeutic concentrations of cisplatin leaked into the resection
cavity in gliomas.16 Factors influencing tumor cisplatin concentra-
tions include calcium levels, the fatty acid composition of the cell
membrane, and prior therapies.16,17 Dexamethasone treatment can
decrease the concentration of chemotherapy in the brain around the
tumor, without affecting the concentration in the tumor itself.16,33

Metabolism can affect drug delivery, retention, and efflux. Stud-
ies with busulfan in normal animal brains and in one patient showed
rapid uptake into the CNS and then a stable brain/plasma concentra-
tion ratio of 0.74.15 However, the proportion of active metabolites
was only 6% in both brain and in plasma.15 The active metabolite
of ifosfamide has been found in both cerebrospinal fluid (CSF)34

and aqueous humor.35 Idarubicin has been studied along with its
active metabolite, idarubicinol, in brain biopsies of patients with
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Fig 1. Relationship between blood-brain barrier (BBB) permeability and octanol/
water partition coefficient for chemotherapeutic agents. The solid line is the
least-squares fit to the data for agents that are not actively taken up by the brain
or pumped out by the BBB.3
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breast cancer metastasis or malignant glioma.24 The tumor con-
centration of idarubicinol was higher than the plasma peak level,
but it is unknown if this was due to enhanced metabolism, in-
creased cellular uptake in the tumor, or decreased efflux activity.
Systemic metabolism can decrease brain tumor concentrations by
decreasing the amount of drug available for delivery. Activation of
cytochrome P450 enzymes with antiseizure medications can in-
crease the dose requirement for some chemotherapeutics by two-
to three-fold.36

Cyclophosphamide is commonly used in the first-line treatment
of systemic non-Hodgkin’s lymphoma and carcinomas, and it can be
used at high doses in intensive chemotherapy before stem cell rescue.

As a prodrug, it requires activation by hepatic cytochrome P450 en-
zymes. However, the active metabolite phosphoramide mustard is
difficult to measure. Therefore, pharmacokinetic data from studies
using radiolabeled cyclophosphamide are of little value, as the
concentration of the active metabolite is not measured.37 One
study measured the alkylating activity of the metabolites of cyclo-
phosphamide and found a brain/plasma concentration ratio of
0.20 in a normal rat brain.38

Metabolism of drugs can also limit pharmacologic measure-
ments. Measurement of brain delivery of cytarabine is complicated by
its rapid elimination and metabolism to inactive uracil arabinoside.
Cisplatin pharmacology studies may be complicated by the difficulty

Table 1. Pharmacokinetics of Drugs in Brain and Brain Tumors

Drug Reference Method Tumor and BAT Normal Brain

Busulfan Hassan et al, 199215 In monkeys, one adult with
AML without CNS
disease: IV
administration

Brain:plasma ratio constant at
0.74 � 0.05

Brain delivery � 20% of administered
dose

6% of brain and plasma radioactivity
identified as active busulfan

Cisplatin Stewart et al, 199516

and 199417
Human surgical tumor

specimen after IV or IA
administration

Therapeutic concentration in tumor
Higher levels in PCNSL, meningiomas,

medulloblastomas
Platinum concentration decreased with distance

from tumor

Nakagawa et al, 199318 Human surgical tumor
specimen after IV or IA
administration

IA administration increased drug levels by two-
fold compared with IV administration in tumor
and BAT

Straathof et al, 199819 Glioma bearing rats after IV
administration

Tumor concentration � 0.76 � 0.23 �g/g; tumor:
plasma ratio � 1.06

BAT concentration � 0.53 � 0.21 �g/g; BAT:
plasma ratio � 0.74

Brain concentration � 0.070 � 0.012
�g/g; brain:plasma ratio � 0.097

Cytarabine Groothuis et al, 200020 Healthy rats, one healthy
dog after IV or CED
delivery

After IV: low concentration
throughout brain

After CED, high localized
concentration

Low rate loss constant from brain

Doxorubicin Neuwelt et al, 198121 Healthy dogs and rats, IV
or IA � BBBD

After IV: not detected
After BBBD: detected in brain,

neurotoxic

Etoposide Savaraj et al, 198722 In dogs, after IV and IA
administration

Brain concentration 4 times higher
after IA than IV

Zucchetti et al, 199123 Human glioblastomas,
astrocytomas (100 to
150 mg/m2 IV)

Tumor concentration � 1 �g/g
Not found in peritumoral area
Decrease with distance from tumor

Idarubicin Boogerd et al, 199924 Human brain metastasis
biopsies or malignant
glioma, oral

Tumor:plasma ratio � 1.2 to 5.8
Drug level at periphery of tumor � plasma

Methotrexate Neuwelt et al, 198425 Rats with glioma,
IV � BBBD

Variable drug levels in tumor and BAT Increased delivery after BBBD (4 to 7
times)

Slørdal et al, 198826 Healthy rats, IV Median brain:serum ratio �
20% � 12

Dukic et al, 200027 Rats with glioma, IV �
microdyalisis

High intersubject variability
Rapid equilibration between tumor and plasma
3 times higher level after IV bolus v IV infusion

Thiotepa Egorin et al, 198428 Healthy mice, IV Rapid distribution
Brain level � 30% to 50% of plasma
Not detected after 1 hour

Topotecan Straathof et al, 199929 Gliomas-bearing rats after
IV administration

Tumor concentration � 96 � 33 �g/g; tumor:
plasma ratio � 0.96

BAT concentration � 13 � 4.9 �g/g; BAT:plasma
ratio � 0.13

Little uptake (20-fold � in tumor)

Vincristine/vinblastine Greig et al, 199030 Rats with carcinosarcomas No tumor uptake No brain uptake

Boyle et al, 200431 Normal rats and IA in
glioblastoma rats

No tumor uptake No brain uptake

Abbreviations: BAT, brain around tumor; AML, acute myeloid leukemia; IV, intravenous; PCNSL, primary central nervous system lymphoma; IA, intra-arterial; CED,
convection-enhanced delivery; BBBD blood-brain barrier disruption.
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of differentiating active drug from inactive conjugates or free plati-
num.18,39 Rapid distribution of thiotepa, a drug used in high-dose
chemotherapy with autologous stem-cell transplantation, was ob-
served in a normal brain, with tissue/plasma concentration ratios of
0.3 to 0.5.28 Thiotepa was not detected in either the plasma or brain for
1 hour after administration, but this likely reflects its transformation
into tepa, the active metabolite of thiotepa, rather than drug efflux.

A number of newer chemotherapeutic agents, such as gemcitab-
ine, docetaxel, pemetrexed, irinotecan, and topotecan, which show
promising antitumor activity against systemic tumors, show limited
delivery across the BBB because of active efflux transport and plasma
protein binding. Topotecan, for example, is a substrate for a multidrug
resistance pump,40 so that although it shows high concentrations in rat
glioma, the concentration decreases sharply with increasing distance
from the tumor.29 The tyrosine kinase inhibitor imatinib binds heavily
to plasma proteins and is a substrate for active efflux pumps.41 The
second-generation agent lapatinib also is subject to P-glycoprotein-
mediated efflux, so may not be effective against brain tumors.42 Fur-
ther, downstream targets, such as signal transducer and activator of
transcription 3 and histone deacetylase may be promising targets for
selective inhibitors that cross the BBB.

The above studies and Table 1 demonstrate that the pharmaco-
kinetics and actual concentrations of only a few of the commonly used
chemotherapeutics have been evaluated in the normal brain, brain
tumor, and tumor-infiltrated brain around tumor for any of the
common CNS tumors (metastases, glioblastoma, and PCNSL). Mea-
surement of the distribution of active drug in and around brain tu-
mors should be a major goal in brain tumor therapy studies. One
recent study used microdialysis to more accurately evaluate drug levels
in extracellular fluid in high-grade glioma subjects (n � 4) after IV
methotrexate (12 g/m2).43 Two subjects with the microdialysis probe
located within contrast-enhancing tumor had methotrexate peak con-
centrations in extracellular fluid of 189 � 6 �mol/L as compared with
only 10.4 � 0.4 �mol/L in two patients with the probe located in
nonenhancing tissue in proximity to the enhancing tumor.43 To base
new chemotherapeutic combinations for CNS tumors on pharmaco-
kinetic data, studies must take into consideration the impact of tumor
type, tumor size and surrounding edema, as well as different doses and
schedules of administration.

CNS DELIVERY OF BIOLOGIC AGENTS

New mAb-based therapeutics have had a pronounced impact on the
clinical treatment of cancer, as exemplified by approved agents target-
ing (relatively) tumor-specific cell surface antigens (eg, trastuzumab
and rituximab), or tumor vasculature VEGF (bevacizumab). Many
others are in late-stage development.44 To optimize the activity of
mAbs, targeted toxins are being developed, in which the mAb carries a
toxic payload, such as a radionuclide (90Y ibritumomab tiuxetan),
chemotherapeutic, or bacterial toxin to tumor cells.45 One new ap-
proach has been to develop mAb-auristatin conjugates, composed of a
potent synthetic antimitotic agent attached to mAb cysteine residues
through a proteolytically cleavable linker.46,47 On antigen engagement
and internalization within lysosomal compartments, active auristatin
is released intracellularly, leading to cell death. These auristatin conju-
gates overcame the multidrug resistance phenotype and exerted im-
munologically specific antitumor activities at fractions of their

maximum tolerated doses.46 Another approach has been the devel-
opment of fusion proteins consisting of antibody fragments target-
ing a potent bacterial toxin that kills the tumor cell by inhibiting
protein synthesis.48

The limitations of brain tumor drug delivery are accentuated for
these new biologic therapies, with most mAbs showing minimal trans-
port across the BBB.49 A study of rituximab immunotherapy in hu-
man PCNSL showed no uptake of IV 123I-rituximab in brain50;
however, clinical responses to rituximab in PCNSL have been report-
ed.51,52 The long plasma half-life of some of the mAbs and immuno-
conjugates can lead to a slow leak of these agents, particularly into
areas of damaged BBB. One study investigated CSF penetration of
trastuzumab in breast cancer brain metastases.53 The CSF:serum ratio
of trastuzumab was 0.0024 in two subjects with relatively intact BBB,
0.0132 in two patients after brain irradiation, and 0.0204 in two pa-
tients with meningeal carcinomatosis.53 Thus, impaired BBB and
blood-CSF barrier integrity improved mAb delivery. A case study of
ibritumomab tiuxetan (Biogen Idec, Zug, Switzerland) delivery and
efficacy in PCNSL is shown in Figure 2. Single photon emission com-
puted tomography imaging showed no uptake of 111In-ibritumomab
at 24 hours (Fig 2A) and minimal uptake at 45 hours (Fig 2B, arrow)
localized at the lesion detected on magnetic resonance imaging (Fig
2C). A complete response was seen 2 months after administration of
90Y-ibritumomab (Fig 2D), but recurrence was detected at 3 months
in the opposite occipital horn with continued complete response at the
site of the original tumor (Fig 2E).

Some mAbs may actually improve chemotherapy delivery. Tar-
geting VEGF with bevacizumab may decrease interstitial pressure to
allow greater entry of drug into the tumor.14 The combination of
bevacizumab with a new chemotherapeutic agent, irinotecan, com-
monly used in the treatment of colorectal cancer, has shown promis-
ing preliminary results in high-grade gliomas.54 Antibodies to BBB
proteins that translocate across the vascular endothelial cells may be an
ideal drug delivery system for the brain. mAbs against the transferrin
receptor55 or the insulin receptor56 can yield global brain delivery in
animal models. Further studies are needed on brain and brain tumor
drug availability for targeted agents that are designed to cross the BBB.

DELIVERY OF CHEMOTHERAPY TO THE CSF

The CSF route of drug administration can effectively bypass the
BBB and readily access the periventricular and leptomeningeal
tissues to treat neoplastic meningitis (NM). Because NM occurs in
5% of all cancer patients, it is imperative to optimize delivery to the
meninges of the main chemotherapeutic agents methotrexate, cyt-
arabine, and thiotepa. Compared with intrathecal (IT; subarach-
noid) injection, intracerebroventricular (ICV) administration
yields better therapeutic levels in CSF with less variability between
patients.57 Both the pharmacokinetic profile of the intra-CSF
chemotherapeutic agent and the site of administration influence
the outcome for NM.58 To avoid neurotoxic effects, the dose cal-
culation for chemotherapeutic agents should be normalized for
CSF/brain volume rather than body-surface area.57

CSF clearance of the lipid-soluble agents is mainly via parenchy-
mal transcapillary diffusion. Thiotepa given ICV is rapidly reabsorbed
across the BBB in periventricular brain capillaries; consequently, ther-
apeutic concentrations are not obtained in subarachnoid space of
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the lower cord.57 Due to thiotepa pharmacokinetics, a higher peak
concentration of the active metabolite tepa is found in CSF after IV
administration of 5 mg/kg28 than after CSF administration of the
maximally tolerated dose (10 to 15 mg).57

For water-soluble agents, the CSF bulk flow or volume transmis-
sion59 is the predominating pharmacokinetic factor. CSF levels of
drugs are affected by efflux transporters in choroid plexus60 and drug-
metabolizing enzymes in the choroidal epithelium,61 but the overrid-
ing factor in drug distribution and elimination is CSF bulk flow
down the neuroaxis from ventricles to subarachnoid space. ICV-
administered methotrexate reaches the lumbar subarachnoid space by
1 hour, and the elimination half-life is 6 � 2 hours.57 A reduction in
CSF flow, caused by elevated intracranial pressure, aging, or the car-
bonic anhydrase inhibitor acetazolamide, increases the elimination
half-life and can thus elevate the concentration of therapeutic agent. A
slow leak of methotrexate from the CSF to the serum may extend the
time frame for high serum levels and thus the need for extended
leucovorin rescue.62

Consistent with first-order kinetics, the CSF concentrations of
water-soluble drugs are proportional to dose. Multiple-dose schedules

have been developed to maintain a stable, sustained therapeutic (cy-
totoxic) concentration in CSF.57 The ideal regimen avoids the exces-
sive concentrations encountered in single-dose regimens for
methotrexate and also produces less neurotoxicity. However, multiple
dosing via CSF-indwelling catheters can involve laborious delivery
methodologies with potential complication. Liposome encapsulation
allows a sustained, gradual release of drugs. The terminal half-life for
liposomal cytarabine after a single ICV dose is about 140 hours,63 at
least 30 to 40 times longer than the elimination half-life of metho-
trexate or cytarabine administered by conventional protocols. A
controlled clinical trial has demonstrated that liposomal cytara-
bine is equally efficacious as free cytarabine for NM.63 On the
negative side, liposomal cytarabine may cause arachnoiditis, lead-
ing to deafness or blindness, and requires prophylaxis with sys-
temic glucocorticoids. In solid tumors, clinical studies failed to
show improved efficacy in treatment outcome, and in fact, there
was no advantage to liposomal cytarabine.64

CSF drug concentrations are often used as a surrogate marker
of brain tumor drug delivery, but CSF levels of a given drug may
vary widely from brain and tumor levels. In periventricular PCNSL,

A

C D E

B

Fig 2. Single photon emission computed tomography brain images 24 (A) and 45 hours (B, arrow shows increased uptake) after 111In-ibritumomab in a subject with
primary CNS lymphoma. T1-weighted magnetic resonance images prior to treatment (C) and 2 (D) or 3 months (E) after 90Y-ibritumomab.
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administration of high-dose IV methotrexate has been used in an
attempt to improve delivery across the BBB and blood-CSF barrier.65

The CSF penetration of IV methotrexate in humans is dose depen-
dent. Cytotoxic CSF levels (greater than 1 �mol/L) were achieved in
no subjects at a dose of 0.5 g/m2, 44% of patients at 2.5 g/m2, 66% of
children treated with 5 g/m2, and 100% of adults treated with 8 g/m2

methotrexate.66-68 Table 2 demonstrates CSF levels after IV adminis-
tration of several chemotherapeutic agents.

High CSF levels may not translate to improved brain delivery or
antitumor efficacy in tumors that affect more than the meninges. In
patients with leptomeningeal involvement, the tumor often fills the
perivascular Virchow-Robin spaces, decreasing diffusion of the drug
through these spaces. ICV and IT methotrexate administration may
only achieve therapeutic levels in the superficial 2 to 3 mm of CNS
parenchyma beyond the subarachnoid space due to interstitial fluid
pressure.90 The ventriculo-cisternal perfusion system is used to study
drug distribution from the CSF into the brain, but even several hours
may be too short to accurately assess drug penetration by diffusion and
convection into the brain interior.91 Long-term osmotic pump infu-
sions into the CSF would allow better steady-state assessments.

Combined IT and IV therapy for CNS tumors takes pharmaco-
logic advantage of two distribution pathways (ie, the CSF-brain and
the blood-brain interfaces). Combined IT and IV therapy involves a
complex array of parameters, pathological and pharmacologic, and
not surprisingly has shown failures as well as successes. The number of
CSF tumor cells may decrease with therapy, whereas neurologic defi-
cits, particularly of lower cranial nerves, persist or increase due to
perivascular tumor infiltration. In Burkitt’s lymphoma and acute lym-
phoblastic leukemia (ALL), combined IV and IT methotrexate
achieved therapeutic CSF levels and is regarded as a reasonable option
for CNS prophylaxis.92 Combined methotrexate administration via
CSF and blood resulted in favorable long-term neurocognitive out-
comes in childhood ALL.93,94 Finally, in a risk-stratified randomized
trial in ALL, a regimen of IT and high-dose IV methotrexate was more
effective in preventing CNS relapse than IT methotrexate alone.95

New therapeutic strategies for NM include the investigation of
agents to enhance cytotoxic potential, minimize neurotoxic effects,
and improve pharmacokinetic properties (eg, diaziquone, mafos-
famide, etoposide, and topotecan).57 The choroid plexus is a poten-
tially useful kidney-like target,91 heretofore underutilized, for more
effectively manipulating the concentration of antitumor agents in
CSF. An important goal is to be able to supplant the IT infusion aspect
of combination regimens with noninvasive pharmacologic manipula-
tion of drug transport across the choroid plexus into the CSF. Finally,
it may be feasible to target ligands, which bind specifically to endoge-
nous receptors in the plexus, to funnel antitumor drugs, proteins, and
even gene therapeutics for transport into and along the choroid plex-
us–CSF arachnoid nexus.91

METHODS TO INCREASE DELIVERY TO THE CNS AND CSF

Convection-Enhanced Delivery

Interstitial infusion with maintenance of a pressure gradient,
known as convection-enhanced delivery (CED), generates bulk fluid
flow through the brain interstitium.96 CED can achieve much higher
local levels of chemotherapy in rodent brain than IV administration20

and is the method of choice for delivery of targeted toxins.48,97 The

volume of distribution of targeted toxins with CED is dependent on
the volume and rate of infusion, the agent’s molecular weight, concen-
tration, polarity, and avidity for the target antigen, and the viscosity
and density of the tissue.97 The limiting factor for choosing a maxi-
mum drug dose and rate of infusion is the onset of neurotoxicity.

Recently, the mechanisms related to failure of the CED technique
in human studies as opposed to small animal studies have been inves-
tigated.11 In rat brain tumors, low rates and volumes of infusion led to
heterogeneous distribution of toxin. Tumor distribution was homo-
geneous at higher volumes and infusion rates, but most of the toxin
(95%) was localized outside of the tumor mass, in the brain around
tumor.11 High and inconsistent tumor interstitial fluid pressure was a
major cause of failure. In brain tumors, areas of normal interstitial
pressure where the pressure is 1 to 2 mmHg are interposed with
peritumoral areas where interstitial fluid pressures can be 50 mmHg
or greater.11,12 The mixed tissue environment in the tumor-bearing
brain can lead to a relatively faster efflux of any drug out of the brain.
Thus, treatment failure results from distribution inhomogeneity, high
interstitial fluid pressure, and rapid efflux of agent from the injection
site. To overcome these issues, increased residence time must be
achieved to enhance targeted toxin receptor binding and uptake by the
cancerous cells.

Targeted Ultrasound BBB Disruption

A new approach to focal CNS delivery is BBB disruption by
MRI-guided focused ultrasound.98 Consistent vascular leak without
tissue damage was achieved by localizing cavitation-generated me-
chanical stresses to blood vessel walls by IV injection of preformed gas
bubbles just before pulsed ultrasound treatment.99 Histology showed
that the low-power ultrasound caused reversible focal opening, which
was completely healed within 24 hours. Marker dye extravasation was
associated with widening of the tight junctions and active vacuole
transport across the endothelial cells.100 The ultrasound with micro-
bubbles exposures did not cause neuronal damage,99 apoptosis or
ischemia,101 or long-term vascular damage.102

Tests were performed to measure the ability of ultrasound BBB
disruption to deliver agents into the brain. A rat brain study showed
that the locations of the brain that were exposed to ultrasound showed
significantly higher concentrations of liposomal doxorubicin and that
clinically relevant levels were reached.103 In another study, antibodies
were delivered into the brain only in the exposed brain locations, and
the antibodies stayed functional in the brain binding to their target
sites.104 This opens the door for the use of antibody-based chemother-
apeutic agents such as trastuzumab for metastatic brain lesions.

Global Osmotic BBBD

Transient osmotic disruption of the BBB and blood-CSF and
blood-tumor barriers can be achieved throughout a vascular circula-
tion by IA infusion of a hyperosmotic agent, usually mannitol.1,105

Osmotic BBBD reversibly opens the BBB by shrinking the cerebrovas-
cular endothelial cells and opening of the tight junctions between
cells.106 The BBB is opened to chemotherapeutics,21,107 antibod-
ies,108,109 and nanoparticles.110

Pharmacokinetics in animals showed that vascular permeability
to methotrexate was maximal by 15 minutes after infusion of manni-
tol and returned to preinfusion levels within 2 hours.1,107 A 10- to
100-fold increase in delivery was measured in intracerebral tumors
and tumor-infiltrated brain, comparing IV administration to IA with
BBBD.33,79,107 These studies illustrated differences between CSF and
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Table 2. CSF Penetration After Systemic Administration of Chemotherapeutic Agents

Drug Reference Subjects (dose) Results

Busulfan Vassal et al, 198969 Children with malignant disease, no CNS involvement
(16 mg/kg)

CSF:plasma ratio � 0.95
Detectable level in CSF 4 days after
therapy

Cisplatin Jacobs et al 200570 Healthy monkeys (2 mg/m2 IV) CSF:plasma ratio of active drug � 0.037
Nakagawa et al, 199671 IA v IV delivery in multiple tumor types CSF:plasma ratio 15% to 24% in glioma after

IA infusion
Maximum CSF patient concentration was
0.51 to 1.64 �g/mL, not therapeutic
Variable delivery depending on tumor type
and route of administration

Cyclophosphamide Yule et al, 199734 ALL children No active metabolite in CSF
Cytarabine Lopez et al, 198572 Patients with CNS or LM metastases Half-life in CSF � half-life in plasma

Slevin et al, 198373 Leukemic or NHL patients (1 or 3 g/m2) Correlation between CSF concentration and
dose
CSF:plasma ratio � 0.12

Scott-Moncrieff et al, 199174 Healthy dogs (600 mg/m2) CSF:plasma ratio � 0.58 � 0.17; range 0.37
to 0.87
No drug detected in CSF and plasma 8
hours after IV bolus
CSF half-life 30% shorter after IV bolus
than after 12-hour IV infusion

DeAngelis et al, 199275 Adult PCNSL patients in CR (3 g/m2) Half-life in CSF � half-life in plasma
CSF:plasma ratio � 0.12 to 0.14

Sutoh et al, 200376 Adult AML (1 g/m2) Half-life in CSF � half-life in plasma
Therapeutic level in CSF in all patients

Etoposide Savaraj et al, 198722 Healthy dogs (2 mg/kg IV or IA) CSF concentration peak at one hour
Higher concentration at all time points after
IA administration

Zucchetti et al, 199123 Adults with primary brain tumor (100 to 150 mg/m2 IV) Never detectable in CSF
Relling et al, 199677 ALL children with or without CSF infiltration (25 or 50

mg/m2 orally, or 300 mg/m2 IV)
Detectable in all CSF samples

CSF concentration correlated with plasma
concentration and dose
Median CSF:plasma ratio � 0.30

Idarubicin Reid et al, 199078 Leukemic children in relapse Idarubicinol detected in 20/21 CSF
Mean CSF concentration � 0.51 ng/mL;
range 0 to 1.05 ng/mL
CSF:plasma ratio � 0.04

Ifosfamide Yule et al 199734 ALL children Active metabolite detected in CSF with high
interpatient variation

Methotrexate Neuwelt et al, 198079 Healthy dogs, IV or IA with or without BBBD Brain concentration equivalent to CSF after
BBBD
No correlation between CSF and brain level
for 30% of animals

Millot et al, 199480 Leukemic children (5 g/m2 IV) Correlation between CSF and serum; large
interpatient variation
CSF level � 1 �mol/L in 66% of cases

Etinger et al, 198281 Leukemic or NHL children (0.5 or 1.5 g/m2) CSF:plasma ratio � 0.01
Lippens and Winograd,

198882
Leukemic or NHL children (3 g/m2) 300-fold variation of CSF level, 10-fold

variation of plasma level
No correlation between plasma and CSF
level

Tetef et al, 200083 Adult cancer patients with or without LM
carcinomatosis

Correlation between CSF and plasma
concentration
Higher CSF level in patients with LM
carcinomatosis

Ballis et al, 200084 Healthy monkeys, IV Lumbar CSF concentration � fourth ventricle
CSF concentration

Zylber-Katz et al, 200085 PCNSL, IV, or IA with or without BBBD (1.4 to 3.5 g/m2) CSF:serum ratio after BBBD was three- to
four-fold higher than after IV

Temozolomide Patel et al 200386 Healthy monkeys CSF:plasma ratio � 0.33
Peak CSF concentration � 26 � 4 �mol/L
at 2.5 hours

Thiotepa Strong et al, 198687 Healthy monkeys Rapid equilibration between plasma, lumbar,
and ventricular concentration after standard
IV dose

Heideman et al, 198988 Children with refractory malignancies CSF:plasma AUC ratio � 1
Vincristine Kellie et al, 200289 Leukemic or NHL children with no CNS disease No measurable concentration in CSF

Abbreviations: CSF, cerebrospinal fluid; IV, intravenous; IA, intra-arterial; ALL, acute lymphoblastic leukemia; LM, leptomeningeal; NHL, non-Hodgkin’s lymphoma;
PCNSL, primary CNS lymphoma; CR, complete remission; AML, acute myeloid leukemia; BBBD, blood-brain barrier disruption; AUC, area under curve.
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brain delivery. After osmotic BBBD, brain levels of methotrexate were
consistently elevated, whereas in six animals CSF levels did not in-
crease (Fig 3). The mean levels were the same, but individual CSF
levels did not reflect increased brain levels after enhanced delivery.79

In humans, BBB permeability to technetium glucoheptonate re-
mained elevated at 2 hours after BBBD, but returned to baseline levels
by 4 hours.111 A pharmacokinetic study demonstrated that CSF/se-
rum methotrexate concentration ratios were elevated by BBBD com-
pared with IV or IA delivery, and the CSF concentration correlated
linearly with the degree of barrier disruption (Fig 4).85

A concern with the use of BBBD is the potential for neurotoxicity
from the high concentrations of chemotherapy delivered to the nor-
mal brain. Chemotherapeutics, such as doxorubicin, cisplatin, and
taxanes, cause neurotoxicity with BBBD, even though they are well
tolerated systemically.112 Drugs found to be safe with BBBD include
methotrexate, carboplatin, etoposide phosphate, cyclophosphamide,
melphalan, mAbs, and immunoconjugates. Concurrent cranial irra-
diation enhanced the neurotoxicity of some chemotherapy agents
delivered with BBBD in rat models.113 With methotrexate, extended
leucovorin rescue may be necessary to prevent neurotoxicity.62 The
BBBD technique itself is not neurotoxic. Overdisruption and cerebral
edema rarely occur in humans because the mannitol infusion rate can
be closely adjusted to match blood flow.

Osmotic BBBD is used clinically to enhance chemotherapy deliv-
ery in brain tumor patients at nine centers across the United States,

Canada, and Israel.1,114-117 To date, almost 6,000 BBBD procedures in
515 patients have been performed, with low morbidity and mortality.
Toxicities in patients treated with IA chemotherapy in conjunction
with BBBD were generally manageable. No cases of dementia were
recorded in a study with 74 PCNSL patients.116

It is hypothesized that enhanced delivery correlates with
improved efficacy. In rats, BBBD delivery of a clinically relevant
chemotherapy regimen was effective in a rat intracerebral lung
cancer xenograft model.118 BBBD delivery of a tumor-specific
mAb-doxorubicin immunoconjugate significantly increased
antitumor efficacy compared with IV or IA administration
without BBBD.109

The effect of BBBD on efficacy has been more difficult to quantify
in humans. BBBD chemotherapy in chemoresponsive tumors, such as
PCNSL, germ cell tumors, and primitive neuroectodermal tumors,
compared favorably with published case series of conventional
chemotherapies.114-116 Randomized phase III trials of BBBD have not
been performed due to the rarity of specific intracerebral tumor types
and the need for multidisciplinary expertise. In PCNSL phase II stud-
ies, a significant difference was found when comparing patients
treated with BBBD chemotherapy with or without prior whole-brain
radiotherapy.119 These studies suggested that BBBD delivery of chem-
otherapy produced long-term remissions with acceptable morbidity
and mortality and preservation of cognitive function.
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In conclusion, chemotherapy for brain tumors often uses
drugs and regimens that are poorly supported by pharmacokinetic
and pharmacodynamic data. Many preclinical studies are difficult
to translate into clinical practice because different doses and treat-
ment regimens were tested in animal models that incompletely
represent the range of human tumors. Drug delivery is complicated
by the presence of the BBB and the variability of BBB and blood-
tumor barrier permeability depending on tumor type, size, loca-
tion, and prior treatments. The need for a greater understanding of
the pharmacology of CNS drug delivery should prompt additional
translational research to correct the gaps in pharmacokinetic in-
formation. In vivo microdialysis with concomitant CSF and serum
measurements of pharmacologically active drug may be the best
route to accurately assess both pharmacokinetics and dynamics in
animal models and clinical trials.

The key to successful chemotherapy of brain tumors is drug
delivery to the tumor-infiltrated brain around the tumor and the
individual tumor cells and micrometastases distant from the main
tumor mass. Conventional drug administration regimens often
result in low levels of drug delivery to brain tumors; therefore,
innovative treatments and alternative delivery techniques are
needed. The choroid plexus can be exploited— directly via modi-
fication of its bidirectional epithelial transport mechanisms and
indirectly by way of pharmacologic alteration of bulk CSF forma-
tion and flow—to enhance the delivery of chemotherapeutic drugs
in the CNS. CED and focused ultrasound can improve local deliv-
ery, whereas osmotic BBBD gives global delivery throughout a
cerebral circulation. Optimization of delivery techniques com-
bined with quality pharmacokinetic studies will improve our use of
the promising new drugs and biologic agents in the pipeline for
brain tumor therapy.
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