
ANRV308-PC58-05 ARI 21 February 2007 11:26

Phosphorylation Energy
Hypothesis: Open Chemical
Systems and Their
Biological Functions
Hong Qian
Department of Applied Mathematics, University of Washington, Seattle,
Washington 98195; email: qian@amath.washington.edu

Annu. Rev. Phys. Chem. 2007. 58:113–42

First published online as a Review in Advance
on October 20, 2006

The Annual Review of Physical Chemistry is
online at http://physchem.annualreviews.org

This article’s doi:
10.1146/annurev.physchem.58.032806.104550

Copyright c© 2007 by Annual Reviews.
All rights reserved

0066-426X/07/0505-0113$20.00

Key Words

chemical kinetics, kinetic proofreading, nonequilibrium steady
state, signal transduction, thermodynamics

Abstract
Biochemical systems and processes in living cells generally operate
far from equilibrium. This review presents an overview of a statisti-
cal thermodynamic treatment for such systems, with examples from
several key components in cellular signal transduction. Open-system
nonequilibrium steady-state (NESS) models are introduced. The
models account quantitatively for the energetics and thermodynam-
ics in phosphorylation-dephosphorylation switches, GTPase timers,
and specificity amplification through kinetic proofreading. The
chemical energy derived from ATP and GTP hydrolysis establishes
the NESS of a cell and makes the cell—a mesoscopic–biochemical
reaction system that consists of a collection of thermally driven
fluctuating macromolecules—a genetically programmed chemical
machine.
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ATP: adenosine
triphosphate

Motor protein: a single
protein, by hydrolyse ATP,
is able to move against force
and converts chemical
energy to mechanical force

Signal transduction: cells
generate, process, and
deliver information via the
biological activities of
proteins, in terms of
chemical reactions

Nonequilibrium steady
state (NESS): a chemical
system with all the
concentrations and
fluctuations being
stationary; the system has
fluxes and dissipates heat

Thermodynamics: the
theoretical basis of any
machine, the dynamics in
terms of transformations of
various form of energies,
including entropy

ADP: adenosine
diphosphate

Pi: orthophosphate

1. INTRODUCTION

Biochemical reaction systems in a living cell are open systems. They exchange mate-
rials with their environment, and they consume chemical energy, usually in the form
of adenosine triphosphate (ATP) hydrolysis, accompanied with dissipating heat. In
current biochemical research, investigators are directing great effort toward elucidat-
ing biochemical complexity. But complexity is only one aspect of living systems: No
matter how complex a biochemical reaction system is, if it is left alone in a closed test
tube, it will gradually decay to become a pile of dirt. In terms of physical chemistry, a
closed system has no life (1). Current cellular signaling research could benefit from a
rigorous physiochemical approach to the functional biochemical systems, with more
attention paid to the continuous supply of energy and the removal of waste. This is
true for all living systems, even those as simple as a single motor protein (2, 3).

It is intuitively obvious that living biochemical systems need free energy.
Schrödinger (4) made it clear that the organization of living matter requires neg-
ative entropy. But how is energy actually utilized and what are its specific biological
functions? In textbooks, the functions of ATP hydrolysis inside a cell are said to be
(a) biosynthesis, (b) ionic and neutral molecular pumping, and (c) mechanical move-
ment. They are known collectively as the three major energy sinks at the cellular level
(5). This view, however, is too limited and too mechanical. In fact, researchers have
suggested that free energy liberated from the phosphorylation and dephosphoryla-
tion cycles of proteins might be used to correct errors in biomolecular recognition (6)
and to improve robustness in cell development (7). In other words, energy may play
an important role in biological information processing and biochemical signal trans-
duction. In biochemical reactions involved in signaling, high-grade chemical energy
is reduced to low-grade heat. The energy involved in processing information must
be explained in terms of entropy production—the central concept in nonequilibrium
steady-state (NESS) thermodynamics (8, 9).

How much free energy is dissipated in normal cellular-information processing?
This is an important question to ask, but surprisingly, I have not been able to find much
data on this. Classic thermodynamics has taught us how to estimate the amount of
chemical energy utilized in doing work, which has to do with the concept of efficiency.
In the age of information, we recognize that free energy is needed not just to do work,
but also for error correction and signal processing. This is an aspect that has not been
widely appreciated but should be addressed in both cellular biology and physical
chemistry.

The available energy relevant to a normal living cell is from the sustained high
concentration of ATP (∼1 mM) and low concentrations of adenosine diphosphate
(ADP) (∼10 μM). With an equilibrium constant of 4.9 × 105 M for ATP hydrolysis
and a Pi (orthophosphate) concentration of ∼1 mM, the phosphorylation potential
in a normal cell is approximately 12 kcal mol−1 (10). The phosphate bond of the
ATP molecule per se does not provide the energy; as Nicholls & Ferguson (11) said,
“[t]he Pacific Ocean could be filled with an equilibrium mixture of ATP, ADP and
Pi, but the ATP would have no capacity to do work.” For example, when a car-
diac myocyte experiences ischemia, its ATP concentration goes down while its ADP
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concentration goes up, and the cellular energy is decreased (12). It is not unreason-
able to suggest that cellular processes such as cell cycle, differentiation, apoptosis,
and cancer development are regulated by cellular energy.

Currently, there is great enthusiasm for quantitative approaches and mathematical
modeling in biology. But if we peek beneath the surface of this passion, we are struck
with a compelling question: How is it possible to develop mathematical models of cel-
lular processes such as gene regulation and signal transduction if even the underlying
basic physical chemistry is still not in hand?

This review focuses on presenting a theory of NESS with fluctuations and demon-
strating how such a mesoscopic theory can be useful in understanding living systems
from a physical chemistry standpoint. An introductory account of the theory of NESS
has already appeared in Reference 13, and Reference 3 summarizes the application
of this approach to motor proteins, which can be thought of as an archetype.

This review is organized as follows: Section 2 illustrates the basic idea of NESS
and its relevance to cellular biochemistry. Applying the ideas and modeling tools from
Section 2, Sections 3–5 focus on three key biochemical systems and subject them to
nonequilibrium thermodynamic analyses. These analyses together show the possible
new biological insights one obtains from physiochemical studies of open biochem-
ical systems far from equilibrium and establish the importance of energy supply in
biochemical signal transduction inside living cells. Finally, Section 6 provides some
summary remarks.

2. EQUILIBRIUM AND NONEQUILIBRIUM STEADY STATES

Chemical equilibrium is a steady state, by which I mean the concentrations of all the
chemical species are constant macroscopically but with stationary fluctuations in a
statistical sense. Here I emphasize the statistical nature of a chemical equilibrium: For
an equilibrium system with only a few copies of some molecules, thermal fluctuations
are significant. This is best understood in a single-molecule experiment in which the
probability for each state of an ever-fluctuating molecule is independent of time (14).

However, not every chemical steady state is an equilibrium. The fundamental
difference between an equilibrium steady state and an NESS is that the concentrations
(or probabilities) are maintained constant by detailed balance in the former but by
circular balance in the latter (Figure 1). There is no net flux in any reaction of a
chemical equilibrium, whereas there are necessarily sources and sinks for a chemical
NESS. The consequences of this distinction are severalfold. First, a chemical NESS
can exist only in an open system in which reactions are driven from sources to sinks
between which there must be a chemical-potential difference. If there is no chemical-
potential difference between two species, then there is no distinction between them
as a source and a sink. In this case, the chemical system is in an equilibrium following
the grand canonical ensemble of Gibbs (15). Second, a driven chemical reaction with
flux generates heat (16). Third, the temporal fluctuations of the chemical species in a
cyclic reaction are time irreversible (17). The breakdown of the temporal symmetry
leads to the possibility of chemical oscillations (18) and other more complex behavior
in space and time (19) in biochemical systems.
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A

k1

k2

k3

k– 2

k– 3 k–1

BC

Figure 1
Simple, unimolecular chemical reaction cycle. In a closed system, the principle of detailed
balance dictates that k1k2k3/(k−1k−2k−3) = 1. Noting that (Equation 2), �μAB =
kB T ln(k−1[B]/k1[A]), �μBC = kB T ln(k−2[C]/k2[B]), and �μCA = kB T ln(k−3[A]/k3[C]).
Thus, we have �μAB + �μBC + �μC A = 0 for all time in a closed system.

2.1. Detailed Balance in Closed Systems

The idea of detailed balance, which distinguishes a chemical equilibrium from an
NESS, was already present, although implicit, in the original work of Boltzmann’s ki-
netic theory (see Reference 20, section 8.2; Boltzmann had originally made a mistake,
which was pointed out by H.A. Lorentz). Lewis (21) formally proposed the concept
of detailed balance in 1925. In introductory chemistry, professors teach detailed bal-
ance as the so-called thermodynamic box that has to be obeyed because of the very
existence of a unique equilibrium constant for each and every chemical reaction.1

More importantly, the equilibrium constant Keq for a reaction, for example,

A + D
k+
⇀↽
k−

B + E, (1)

is directly related to the standard-state chemical-potential difference of the chemical
reaction: �μo = −kB T ln Keq. Based on the law of mass action, we can write the
forward- and backward-reaction fluxes as J+ = k+[A][D] and J− = k−[B][E], where
k+/k− = Keq. Less widely shown, however, is the chemical-potential difference,�μ,
between the reactants and the products, as a function of the fluxes:

�μ = �μo + kB T ln
[B][E]
[A][D]

= kB T ln
J−
J+

. (2)

Equation 2 shows that the chemical equilibrium (i.e., �μ = 0) dictates that J+ =
J− (i.e., detailed balance). The net-reaction flux J = J+ − J− = 0 is sufficient and
necessary for a chemical equilibrium.

1The assumption here is that the chemical reaction systems in aqueous solution are overdamped, and hence
all the dynamic variables are even according to Marchlup & Onsager (22, 23). For underdamped systems with
both even and odd variables, motion such as superconducting in a magnetic field could break the detailed
balance without energy dissipation (24).
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BC

Figure 2
Cyclic enzyme reactions with substrates D and E can be mapped into the unimolecular cycle
in Figure 1 in terms of pseudo-first-order rate constants: k1 = ko

1[D] and k−1 = ko
−1[E] in a,

and k1 = ko
1[D] and k−3 = ko

−3[E] in b. If the species D and E are in equilibrium, then we have
γ = k1k2k3/(k−1k−2k−3) = 1. However, if [D] and [E] are sustained under nonequilibrium
conditions in an open system, then the chemical-potential difference between D and E,
�μED = kB T ln γ , is not equal to zero. The difference �μED > 0 drives a cyclic flux in the
reactions A → B → C → A.

For a set of reactions in a closed system with detailed balance, both flux J and
chemical-potential difference �μ are zero for each and every reaction in the steady
state. We can in fact mathematically prove that the equilibrium steady state is unique
and globally attractive (25). Then, if there is a reaction cycle as shown in Figure 1,

[B]eq

[A]eq

[C]eq

[B]eq

[A]eq

[C]eq
= k1k2k3

k−1k−2k−3
= 1. (3)

This is what is known as the thermodynamic box.
Now let us consider the kinetic schemes shown in Figure 2. We can let A, B,

and C be three conformations of a single enzyme, and D and E be substrates. If the
concentrations of the substrates are significantly greater than the enzyme, then we
can effectively introduce pseudo-first-order rate constants. It is easy then to show
that chemical equilibrium between species D and E is equivalent to Equation 3. We
can take Figure 2a, for example:

ko
1k2k3[D]eq

ko
−1k−2k−3[E]eq

= keq
1 k2k3

keq
−1k−2k−3

= 1. (4)

The same result holds for Figure 2b. Hence, from the standpoint of the cyclic enzyme
reaction, we have to consider only the unimolecular reaction cycle in Figure 1.
Reaction cycles are fundamental to biochemical network kinetics (16, 26).
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2.2. Nonequilibrium Steady States in an Open System

The situation is quite different in an open system. Let us take the kinetics in
Figure 2 as an example. If the enzyme reactions are in open systems with con-
centrations of D and E sustained by an external agent, then

�μED = kB T ln γ = kB T ln
k1k2k3

k−1k−2k−3
(5)

is the chemical driving force for cyclic reactions A → B → C → A. Even though the
detailed kinetics are different in Figures 2a,b, from an enzyme kinetic standpoint,
the fundamental difference is whether γ = 1, that is, whether the reaction loop in
Figure 1 satisfies detailed balance or whether the system is closed or open. A closed
system tends to be an equilibrium, whereas an open system tends to be an NESS.

Let us now consider a more realistic pair of biochemical reactions in which an
enzyme, E, is phosphorylated and then dephosphorylated:

E + ATP
k1
⇀↽
k−1

E∗ + ADP, E∗ k2
⇀↽
k−2

E + Pi, (6)

in which E∗ is the phosphorylated form of E. We assume the concentrations of
ATP, ADP, and Pi are held at constant c T , c D, and c P , a reasonable assumption for a
normal physiological intracellular environment and an idealization for open chemical
systems. Then the kinetic equations based on the law of mass action are

d [E]
dt

= −d [E∗]
dt

= −k1[E]c T + k−1[E∗]c D + k2[E∗] − k−2c P [E]. (7)

The steady-state concentrations for E and E∗ are easily obtained:

[E]ss = k−1c D + k2

k1c T + k−2c P + k−1c D + k2
, [E∗]ss = k1c T + k−2c P

k1c T + k−2c P + k−1c D + k2
.

There is also a steady-state cycle flux,

Jss = k1k2c T − k−1k−2c Dc P

k1c T + k−2c P + k−1c D + k2
. (8)

We should note that the free energy of one ATP hydrolysis is

�μDT = kB T ln
k−1k−2c Dc P

k1k2c T
, (9)

which is usually sustained by the constant levels of c T , c D, and c P in a living cell.
More interestingly, we have

−Jss × �μDT ≥ 0, (10)

where the equal sign holds true if and only if Jss = 0 and �μDT = 0. The product of Jss

and �μDT in Equation 10 is the ATP hydrolysis energy per unit time, which is also the
rate of heat dissipation of the chemical reaction system in its NESS. There is a close
analog between this equation and the fact that current multiplied by voltage equals
power in an electrical circuit. The inequality is in fact a statement of the second law of
thermodynamics: With only a single-temperature bath T, we can only continuously
convert chemical work to heat, but not the reverse. If the reverse were possible, then
we would have a chemical perpetual-motion machine of the second kind (27).
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CME: chemical master
equation

2.3. Fluctuating Nonequilibrium Steady States of an Open System
and Its Uniqueness

With the understanding that an NESS is a state of an open system with fluctuations,
we can now discuss NESSs of open systems more generally. Here I focus exclusively on
chemical reaction systems.2 There are three widely used classes of stochastic kinetic
equations for characterizing fluctuations. The first class, Hill’s (16) approach, uses
linear rate equations for a unimolecular reaction network. The second class, which
has its origin in the Kramers’ theory and polymer theory (28, 29), uses the general
Brownian dynamic equation for single macromolecules in a phase space with an inter-
nal energy landscape. We have recently developed this theory further for open single
macromolecules in NESSs (30, 31). The third class, widely known as the Gillespie
algorithm (32), uses the chemical master equation (CME) for a nonlinear–chemical
reaction network. All three classes of models are well studied in the mathematical
theory of Markov processes (23, 33). They are known as continuous-time Markov
chains, diffusion processes, and birth-death processes, respectively. One of the most
important results from the mathematical study is that with quite general conditions,
all these Markov processes have a unique stationary long time limit (i.e., a steady state).
In chemical terms, this means most of these reaction systems are self-organizing: No
matter what the initial state of a system is, after a long time it approaches a unique
steady state with stationary fluctuations. Under this definition, a system with bista-
bility simply has a bimodal steady-state probability distribution, and a system with
sustained chemical oscillation has a steady-state distribution concentrated along a
closed loop in concentration space (34).

As with the equilibrium steady state of a closed system, the unique NESS of an open
system is a function of the conditions in which the system is situated. In addition to the
usual temperature, pressure, and solvent conditions, an NESS depends in particular
on the nature of the sources and sinks. For example, a specific chemical species as a
source can be at a fixed concentration or have a constant rate of production (flux).
This has a close analogy to the two types of ideal batteries in electrical circuit theory:
the constant voltage and the constant current power supplies. A real battery, of course,
is in between these two limits, as is a real biochemical source, or sink, in a living cell.
Nevertheless, idealization is essential in theoretical studies.

For every open biochemical system, a corresponding closed system can be obtained
by shutting off the sources and the sinks. This corresponding system is an important
reference for the open system and its thermodynamics.

2.4. Energy Exchange with Molecular Number Conservation

One of the simplest open biochemical reactions is an enzyme-catalyzed reaction with
substrate and product concentrations held constant (Figure 2). The reaction is open
because the species D and E are held constant as a source and a sink of the system.
There are material exchanges. However, from an enzyme-kinetic standpoint, it is

2Other, nonchemical examples of NESS are forced-dissipative fluids and electrical circuits with batteries.
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Kinetic proofreading:
biochemical specificity can
be modulated by purely
kinetic means without
changing molecular
structures

Stochastic processes:
dynamic processes for which
one cannot say when and
where, but when and the
probabilities of being where

even simpler to consider the enzyme cycle A ⇀↽ B ⇀↽ C ⇀↽ A with unimolecular rate
constants. In such a representation, material exchange becomes implicit, and the
consequence of the open system is the chemical energy input γ �= 1.

From the enzyme-kinetic perspective, the system now has a constant number of
molecules. Assuming there are N enzymes, then the total number of molecules in
states A, B, and C (nA + nB + nC = N) is constant. The fluctuations in the molecular
numbers (nA, nB , and nC ) are not independent. In fact, the joint probability follows
a multinomial distribution

P (nA, nB, nC ) = N !
nA!nB !nC !

pnA
A pnB

B pnC
C , (11)

where p X (X = A, B, C) satisfy the stochastic model for a single enzyme in terms of
a master equation.

Hill (16, 35) has used extensively this approach to open systems with single en-
zyme molecules. It is also the mathematical basis of Hopfield’s (6) theory of kinetic
proofreading, and recent work on chemical models of motor proteins (3, 36, 37) and
stochastic Michaelis-Menten kinetics (38, 39).

2.5. Grand Canonical Systems with Material Exchange

Not all open biochemical reactions can be made implicit by the conservation of the
number of molecules. Let us consider the simple example

A
k1
⇀↽
k−1

X
k2
⇀↽
k−2

B. (12)

If an NESS is sustained by constant concentrations of A and B, then the number of
X molecules fluctuates. The probability of having n X molecules, pn(t), satisfies

d pn(t)
dt

= − (k−1 + k2) npn + (k1nA + k−2nB ) . (13)

The steady-state pn from Equation 13 is a Poisson distribution,

pn = λn

n!
e−λ, (14)

where λ = k1nA + k−2nB
k−1 + k2

is the mean number of X. If N in Equation 11, the total number
of molecules in the system, is not a constant but instead fluctuates following a Poisson
distribution, then

P (nA, nB, nC ) =
∞∑

N=0

P (nA, nB, nC |N)PN =
∏

X=A,B,C

(
(λp X)nX

nX!
e−λp X

)
. (15)

That is, in an open system with a fluctuating total number of molecules, the number of
molecules in each state is Poisson distributed. The situation is completely analogous
to the grand canonical ensemble in equilibrium statistical mechanics. (See Reference
40 for more discussion.)
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2.6. Stochastic Systems with Nonequilibrium Thermodynamics

To study the thermodynamics of a mesoscopic NESS, one needs to have a general
theory of nonequilibrium thermodynamics with fluctuations. In recent years, there
have been two approaches for establishing the basic, stochastic formalism for such
a theory. Rubı́ and coworkers (41) started their approach with basic thermodynamic
considerations in probabilistic terms. Our own work (3, 30, 31), which was motivated
by the theory of molecular motors, is based on chemical kinetic equations, most
notably the Markov models for single molecules (2, 36, 38, 42, 43) and the CMEs for
nonlinear chemical reactions (25, 34). As mesoscopic theories, both approaches focus
on the probability density function, P (x, t), in a phase space and introduce entropy,
and free energy, associated with the distribution

S[P (x, t)] = −kB

∫
P (x, t)lnP (x, t), F [P (x, t)] =

∫
P (x, t)μ(x, t) d x, (16)

where μ(x, t) = U(x) + kB T ln P (x, t) is the local chemical-potential function and
U(x) is the internal energy function. S[P (x, t)] and F [P (x, t)] indicate that the entropy
and free energy are functions of the probability distribution P (x, t). Both approaches
have led to essentially similar thermodynamic formalisms in the form of a Fokker-
Planck equation, in which there is a linear relationship between the thermodynamic
flux and force. In fact, both approaches yield

T
dS
dt

= −hdr + epr, (17)

where hdr is the entropy flux (i.e., isothermal heat dissipation rate), epr is the entropy
production rate, and J(x, t) below is the nonequilibrium flux in the phase space:

hdr =
∫

∇ · ( J(x, t)μ(x, t))d x, epr = −
∫

J(x, t) · ∇μ(x, t) d x, (18)

∂ P (x, t)
∂t

= −∇ · J(x, t). (19)

If we assume that J ∝ −∇μ, then we arrive at a Fokker-Planck equation (41), shown
in Equation 20 below. For mesoscopic systems with discrete states, however, the
Markov flux between states A and B, JAB = kAB PA − kB APB , is not linearly pro-
portional to �μAB = kB T ln (kB APB/(kAB PA)). Still, when integrations are replaced
by summations, Equations 16–18 apply to discrete master-equation systems (16, 44),
which means the thermodynamic formalism is also applicable to nonlinear, far-from-
equilibrium chemical reaction systems.

2.7. Single Macromolecules as Open Systems

There are two stochastic modeling approaches to single macromolecules. One is
based on phenomenological rate equations for discrete conformational states of a
molecule, and the other is based on a continuous energy–landscape description of a
macromolecule as a polymer (45). Both approaches have been widely used in physical
chemistry and biophysics.
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By applying the continuous energy–landscape approach (i.e., Kramers’ theory) to a
single macromolecule in NESSs, we developed a theory of stochastic macromolecular
mechanics (SM3) (30, 31, 46). To model an open system, we introduced a driving force
in addition to the internal conformational energy U(x). Hence, the total force in the
Fokker-Planck equation is F (x) = −∇U(x)+G(x), where G(x) usually does not have
a potential (∇ × G(x) �= 0). The nonpotential force represents the breakdown of
detailed balance (47) owing to implicit sources and sinks. When they are shut off,
G(x) = 0, and U(x) represents the energy landscape of the corresponding closed
system.

The Fokker-Planck equation for an open system has the standard form

∂ P (x, t)
∂t

= ∇ ·
{

P (x, t)
η(x)

[kB T∇ ln P (x, t) − F (x)]
}

. (20)

What is the relation between this dynamics equation and the laws of thermodynamics?
Can thermodynamics be rigorously established from it? It turns out, if we introduce
the correct definitions for various thermodynamic quantities, then Equation 20 in
fact contains Equation 17, and more.

We can summarize the thermodynamics in the following equations. Let us recall
that the system is undergoing stochastic dynamics Xt in phase space with probability
distribution P (x, t). We can then introduce the stochastic work d Wt as a function of
time associated with the movement of the system d Xt :

d Wt = F (Xt) ◦ d Xt, (21)

where the symbol ◦ indicates that the stochastic integration is in the Stratonovich
sense (23). We can also introduce a stochastic entropy 	t ,

	t = −kB ln P (Xt, t). (22)

Then Onsager’s thermodynamic force 
t is in fact


t = F (Xt) + T∇	t(Xt), (23)

which is the mechanical force plus the entropic force. If F (Xt) can be written as
−∇U(Xt), then 
t = −∇{U(Xt) − kB T ln P (Xt, t)}. The term in the brackets is in
fact the free energy. Hence, Onsager’s thermodynamic force is the gradient of the
chemical potential (48, 49). Finally, we can introduce the stochastic dissipation dQt

associated with the movement d Xt :

dQt = 
t ◦ dXt . (24)

The mean dissipation rate, d 〈Qt〉/dt, is the epr in Equation 17, and the mean d 〈Wt〉/dt
is the hdr in Equation 17.

For a closed system, G(x) = 0 and F (x) = −∇U(x). Then we have d Wt =
−dU(Xt), 	t = −kB ln P (Xt, t), 
t = −∇ (U(Xt) − T	(Xt)) = −∇μ(Xt), and
d Qt = −dμ(Xt). In the equilibrium stationary state, we have 〈d W(t)〉 = 0, the
fluctuating 
t ≡ 0, because μ(Xt) = const., and dQ(t) ≡ 0. More interestingly, for
an open system driven at the boundary, there is no breakdown of detailed balance in
the interior of the phase space; hence G(x) = 0. In this case, a nonconstant chemical
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potential μ exists, and 
t �= 0. This formalism of a motor protein, known as rectified
Brownian motion, can be found in Reference 43.

2.8. Mesoscopic Open–Nonlinear Chemical Reaction Systems

One of the essential differences between the open-system NESS of single macro-
molecules and the NESS of general nonlinear chemical reactions is the conservation
of the number of molecules: precisely one in the former and a grand canonical ensem-
ble in the latter. In other words, fluctuations in a single-molecule NESS are among
the different states of the molecule, whereas fluctuations in nonlinear reactions are the
number of molecules in the system. In recent years, through Gillespie’s (32) work,
the CME formalism for nonlinear–chemical reaction systems (50) has become widely
appreciated. This approach to mesoscopic systems plays the same role as the law of
mass action for macroscopic systems. It enables us to write mathematical equations
for the stochastic dynamics of mesoscopic–chemical reaction systems. In fact, with an
increasing system’s size and number of molecules, we can show mathematically that
the solution to a stochastic CME approaches that of the differential equations based
on the law of mass action (51). Therefore, we should consider the CME approach
a more complete mathematical theory of chemical kinetics. In addition to providing
fluctuations, the theory also naturally encompasses a statistical thermodynamics.

To establish the CME as the mathematical framework for chemical reaction sys-
tems, we need to integrate the well-known chemical oscillations into the theory. Us-
ing the CME approach, we have recently studied nonlinear chemical oscillations in
mesoscopic systems that exhibit both stochastic fluctuations and temporal complexity
(34). The distinction between these two types of dynamics can be easily understood
in terms of Equation 20, in which the first term on the right-hand side represents dif-
fusion, and the second term represents drift. The diffusion term generates stochastic
fluctuations. The drift term, however, contains deterministic, nonlinear dynamics.
It can generate oscillatory or even chaotic temporal dynamics. The diffusion term
diminishes with an increasing system’s size and number of molecules, and in certain
situations, pumping energy into the system has a similar effect. From this observation,
we have concluded that in a driven open system, large temporal variations can be in
fact biologically functional rather than mere stochastic fluctuations (34, 52). Energy
derived from phosphorylation can suppress the stochastic fluctuations while promot-
ing temporal complexity, making a cell behave more like a macroscopic machine. (See
Reference 13 for more discussion.)

3. PHOSPHORYLATION-DEPHOSPHORYLATION CYCLE
AND A NEW KIND OF COOPERATIVITY

The switching of enzymes and proteins between phosphorylated and dephosphory-
lated states is a universal biochemical process inside living cells (53, 54). But why has
protein phosphorylation evolved to be the ubiquitous mechanism for regulating en-
zyme activities in biochemistry? Our current hypothesis is that the free energy derived
from ATP hydrolysis is used to ensure the proper function of biochemical signaling.
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Phosphorylation-
dephosphorylation switch:
the biological activity of a
protein is turned on by its
phosphorylation and turned
off by dephosphorylation

PdPC: phosphorylation-
dephosphorylation
cycle

This chemical energy is necessary for overcoming intrinsic biochemical noise from
thermal agitations, small copy numbers, and limited affinities, guaranteeing precise
and robust cell development and functions.

3.1. Phosphorylation-Dephosphorylation Cycle Kinetics
as a Cellular Switch

Because of the central importance of the phosphorylation-dephosphorylation cycle
(PdPC), I begin with a simple kinetic model for such a system. Figure 3a shows a
biochemical switch with E and E∗ being the inactive and active forms of an enzyme,
respectively. A complete cycle, E → E∗ → E, is accompanied by one ATP hydrolysis.
It is easy to show that the equilibrium constant for the ATP hydrolysis is

[ADP ]eq[Pi ]eq

[ATP ]eq
= [ADP ]eq[E∗]eq

[ATP ]eq[E]eq

[Pi ]eq[E]eq

[E∗]eq
= ko

1

ko
−1

k2

ko
−2

. (25)

Hence, for given ATP, ADP, and Pi concentrations, the chemical energy available for
one ATP hydrolysis is

�μDT = kB T ln
ko

1k2[ATP ]
ko

−1ko
−2[ADP ][Pi ]

= kB T ln
k1k2

k−1k−2
, (26)

where k1 = ko
1[ATP ], k−1 = ko

−1[ADP ], and k−2 = ko
−2[Pi ] are pseudo-first-order

rate constants.
The kinetic equation is simple. We note that ET = [E] + [E∗], the total amount

of enzyme molecules, is constant:

d [E]
dt

= −d [E∗]
dt

= −J1 + J2, (27)

with

J1 = k1 (ET − [E∗]) − k−1[E∗], J2 = k2[E∗] − k−2 (ET − [E∗]) . (28)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 3
Various kinetic models for cellular biochemical switches. For clarity, reversible reactions are
represented by ↔ rather than �. (a) Simplest, nonenzymatic phosphorylation-
dephosphorylation cycle (PdPC) with E and E∗ as the nonphosphorylated and phosphorylated
forms of a protein, respectively. ko

1 and ko
−1 are rate constants for phosphorylation and its

reverse reaction, respectively. k2 and ko
−2 are for dephosphorylation and its reverse reaction,

respectively. ko
1, ko

−1, and ko
−2 are second-order rate constants. (b) PdPC with kinase and

phosphatase as enzymes. If both enzymes are highly saturated, ultrasensitivity arises (55, 56).
(c) If E∗ has a positive feedback control for the kinase activity (dashed line), bistability can occur
(7, 57). (d) The kinetics scheme of a guanosine triphosphatase (GTPase) cycle, another key
cellular signal-transduction module (58). GGDP and GGTP are the GDP- and GTP-bound
GTPase. The reactions are catalyzed by two enzymes: guanine-nucleotide exchange factor
(GEF) and GTPase activation protein (GAP). The GTPase cycle is remarkably similar to the
PdPC in b.
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The fraction of the enzyme in the active form in steady state is

f = [E∗]
[E] + [E∗]

= θ + μ

1 + θ + μ + θ/(γμ)
, (29)

where θ = k1/k2, μ = k−2/k2, and γ = k1k2/(k−1k−2) = exp(�μDT/kB T ). We can
consider θ as the controlling parameter for the switch. If there is no energy available,
γ = 1. Then, f = μ/(1 + μ) in Equation 29, which is in fact independent of θ .
In other words, if there is no energy, there is no switch. If μ is small and there is
sufficient free energy (γ � 1/μ), then

f ≈ θ

1 + θ
. (30)

There is a transition from f = 0 to f = 1 when θ changes from 0 to ∞. We can find
the sharpness of the transition in Equation 29 (Figure 4a) as a function of θ , and we
can define this sharpness as(

d f
d ln θ

)
f = 1

2

= (1 − μ)(μγ − 1)
4μ(γ − 1)

. (31)

The Hill coefficient of the transition, a widely used concept borrowed from allosteric
cooperativity, is

nh = 4
(

d f
d ln θ

)
f = 1

2

. (32)

The bottom curve in Figure 5 shows how nh increases with γ , with μ = 0.001. For
Equation 30, nh = 1. The sharper the transition (i.e., the greater nh), the greater the
sensitivity of the switch to small changes in the controlling parameter.

3.2. Kinase, Phosphatase, and Ultrasensitivity

Can a biochemical switch undergo a transition sharper than nh = 1? Based on the
seminal theory of Goldbeter & Koshland (55), we recently developed a kinetic model
for reversible PdPC with Michaelis-Menten kinetics for kinase and phosphatase. The
fraction of enzyme in the active form in steady state, f , satisfies the equation (56)

θ ≡ K2V1

K1V2
= μγ [μ − (μ + 1) f ][K1 + (1 − f )ET]K2

[(μγ + 1) f − μγ ]K1( f ET + K2)
, (33)

in which ET is the total enzyme concentration, ET = [E] + [E∗], and K1, V1 and
K2, V2 are the Michaelis constants and the maximal velocity of kinase and phosphatase,
respectively. The ratio of the rate of the kinase to that of the phosphatase, θ , is again
the controlling parameter, and μ and γ have the same meaning as above. If the
total enzyme concentration, ET , is sufficiently lower than K1 and K2, then there
is no kinase and phosphatase saturation. In that case, Equation 33 is reduced to
θ = μγ [μ − (μ + 1) f ]/[(μγ + 1) f − μγ ], which agrees with Equation 29.

The Hill coefficient for Equation 33 is

nh =
[

μ(γ − 1)
(1 − μ)(μγ − 1)

− ET(ET + K1 + K2)
(ET + 2K1)(ET + 2K2)

]−1

. (34)
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Figure 4
The phosphorylation-dephosphorylation cycle as a biochemical switch (a), with ultrasensitivity
(b), and with nonlinear feedback (c), at different levels of available free energy. (a) Simple
reaction kinetics in Figure 3a. Curves are according to Equation 29 with μ = 0.001.
(b) Kinase- and phosphatase-catalyzed reactions in Figure 3b with saturation. Curves are
according to Equation 33 with μ = 0.001, K1/ET = K2/ET = 0.01. The curves show a sharp
transition. (c) Kinetics with feedback (Figure 3c). Curves are according to Equation 38 with
μ = 0.001, ET = 10. These curves exhibit bistability.

Again, if K1, K2 � ET , then this agrees with Equation 32. However, if K1, K2 � ET ,
this is the condition for both kinase- and phosphatase-catalyzed reactions to be zeroth
order. Then (56)

nh =
[

1 − 2μ + μ2γ

(1 − μ)(μγ − 1)
+ K1 + K2

ET

]−1

≈
[
μ + 1

μγ
+ K1 + K2

ET

]−1

, (35)
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Figure 5
Hill coefficient in the phosphorylation-dephosphorylation cycle (PdPC) with ultrasensitivity.
When K1/ET = K2/ET = 1, the curve is indistinguishable from Equation 32. With
increasing saturation for both kinase and phosphatase, nh increases. The computation is based
on Equation 34 with μ = 0.001. For K1/ET = K2/ET = 0.01, nh approaches 48 (data not
shown).

when μ � 1 and μγ � 1. Figure 4b shows the ultrasensitive activation with different
amounts of available energy. Figure 5 shows how the Hill coefficient increases with
increasing γ and decreasing K1/ET , K2/ET . The sensitivity of a switch in fact can be
tuned by the amount of available energy, as well as the saturation level of the kinase
and phosphatase. The latter mechanism is known as zeroth-order ultrasensitivity
(55).

3.3. The New Concept of Temporal Cooperativity

The large Hill coefficient, nh , in Equation 35 indicates high cooperativity. But what
is the origin of this cooperativity? In the past, allosteric cooperativity in multisubunit
proteins has been understood through subunit-subunit interaction. In the ultrasen-
sitive zeroth-order PdPC, there is one kinase and one phosphatase, and there is no
multisubunit protein involved.

To understand this new kind of cooperativity, let us first revisit some basic concepts.
Figure 6a shows a sequential reaction involving four identical, independent proteins.
Each protein has two conformational states (square and circle), with k+ and k− as the
rate constants for the conformational transitions. The number of proteins in the circle
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=
(i + 1)α
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Figure 6
Noncooperative and
cooperative systems. (a) In a
noncooperative system with
four subunits, each subunit
undergoes a transition from
a square to a circle. If all the
subunits are independent,
then the rate constants are
αi = (4 − i )k+ and βi = ik−,
with the integer in the
kinetic scheme indicating
the number of circles among
the four subunits. The rule
for a noncooperative system
is (i + 1)αi /((4 − i )βi+1) =
constant. Deviation from
this rule means
cooperativity. (b) Koshland-
Nemethy-Filmer-like
cooperativity in which the
subunits are interactive with
their neighbors. The η

parameter represents the
interaction energy. Hence,
if η > 1, there is a positive
cooperativity, and if η < 1,
there is a negative
cooperativity. (c) In
zeroth-order temporal
cooperativity, there is no
multisubunit interaction.
Rather, the saturation of the
enzyme reaction makes a
zeroth-order transition
between a square to a circle.
Hence, all the αi are the
same, as are the βi . There is
a positive cooperativity
according to the rule above.
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Temporal cooperativity: a
mechanism for sharp
transition without
allosterism; the interactions
between the players are in
time, not in space

state characterizes the state of the system:

0
α0
⇀↽
β1

1
α1
⇀↽
β2

2
α2
⇀↽
β3

3
α3
⇀↽
β4

4. (36)

Then a simple combinatorial argument shows the apparent rate constants αi = (4 −
i )k+ and βi = ik−.

In general, for sequential kinetics of N identical, two-state proteins with apparent
equilibrium constants αi/βi+1, the proteins are independent if the weighted ratio
(i +1)αi/((N− i )βi+1) is independent of i . Conversely, if the weighted ratio increases
with i , then the conformational changes are cooperative. The same principle applies
to conformational changes in multisubunit proteins.

In the classic model of allosteric cooperativity, such as the one proposed by
Koshland et al. (59) shown in Figure 6b, the rate constants αi and βi are functions
of the free energy of the subunit-subunit interface interaction: kB T ln η. Hence the
weighted ratio increases with i .

The meaning of zeroth order is precisely that αi = α and βi = β; both are in-
dependent of the substrate concentration. Hence, the weighted ratio increases with
i . This leads to cooperativity (i.e., ultrasensitivity). There is no direct interaction
between the substrate enzymes. However, they all compete for the single kinase and
phosphatase. Because this interaction is not through space, but instead is sequen-
tial in time, we refer to it as temporal cooperativity (56). (For more discussion on
the comparison and relationship between allosteric cooperativity and the temporal
cooperativity, see Reference 56.)

Conformational changes in enzymes can be regulated either by allosteric ligand
binding or by covalent modification. Both lead to cooperative transitions. What is the
difference between these two types of regulation and cooperativity? Fischer & Krebs
(60), who discovered protein phosphorylation as a regulatory mechanism for enzyme
activity, raised this question. In particular, Fischer et al. (53) ask (a) “[w]hy have or-
ganisms found it advantageous to develop separate mechanisms to control the activity
of enzymes, namely, by noncovalent (allosteric) changes in structure mediated by ap-
propriate effectors (binding), and by covalent modifications (via phosphorylation and
ATP hydrolysis) of the proteins?” and (b) “[w]hy are these two mechanisms, i.e., non-
covalent allosteric regulation and covalent modification via phosphorylation, usually
superimposed on one another even though the changes in conformation resulting in
either activation or inhibition are essentially the same?”

Our work (61, 62) has suggested that the essential difference between the allosteric
mechanism and the hydrolysis cycle is that the former does not expend energy. Yet
there are important tradeoffs associated with these two types of regulation. Regulation
via the allosteric effect requires a sufficient quantity of regulator (proteins) to be
present, in an amount approximately equal to that of the regulated enzyme. The
PdPC approach requires only a relatively small amount of regulators (i.e., kinase and
phosphatase) as catalysts. The costs of the two types of regulations are quite different.
One requires a significant amount of regulator biosynthesis in advance. The other
requires only a small amount of regulators for the hydrolysis reaction, but it consumes
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energy during the regulation. In computer engineering terms, this is an issue of
material cost-versus-energy utilization, an issue of overhead versus operational costs.

One can also analyze the temporal dynamics of the two types of regulation. Fur-
thermore, if one investigates the nature of a signal in a biochemical regulation, then
one finds one type of regulation can be more advantageous than another. For exam-
ple, if regulatory molecules are in large concentrations (e.g., metabolites), then the
allosteric interaction is natural. However, if regulatory information is represented by
only a small number of copies of an active protein (such as in photon detection in the
visual systems), the PdPC is more appropriate for the task.

3.4. Nonlinear Feedback and Bistability in Chemical
Reaction Systems

Ferrell & Xiong (57) proposed a PdPC kinetic model with feedback, shown in
Figure 3c. The dashed line in Figure 3c represents a positive feedback: E∗ is an
allosteric effector for the kinase (7).

For simplicity, we assume that both enzymes, the kinase and the phosphatase, are
not saturated. An enzyme necessarily catalyzes both forward and backward reactions.
Hence the Js in Equation 28 become

J1 = {k1 (ET − [E∗]) − k−1[E∗]} [K ][E∗]2,

J2 = {k2[E∗] − k−2 (ET − [E∗])} [P ], (37)

where [K ] and [P ] are the concentrations of the kinase and phosphatase.
The fraction of the active form E∗ in steady state, f , satisfies (7)

θ = k1[K ]
k2[P ]

= μγ [μ − (μ + 1) f ]
[(μγ + 1) f − μγ ]E2

T f 2
. (38)

Figure 4c shows a bistability in contrast to the sharp transition in Figure 4b owing
to ultrasensitivity.

In a closed system with γ = 1, the bistability disappears. Equation 38 shows that
there is a unique equilibrium, (μ + 1) f − μ = 0, the same as that of Equations 29
and 33. Mathematically, the bistable region moves to the negative part of θ : θ =
−μ/(ET f )2, which has no physical meaning (7).

In an open system with γ � 1, there is a fundamental difference between the
transitions in Figures 4b,c. At every given θ-value, the transition in Figure 4b has a
unique steady state. The transition with increasing θ follows exactly the reverse path
for decreasing θ . However in the transition in Figure 4c, when 0.03 ≤ θ ≤ 3, there
are three coexisting steady states, with the one in the middle being unstable. The
transition with increasing θ follows a path different from the one with decreasing θ .
The difference between these two paths is called hysteresis, which is characteristic
of nonlinear systems. (See Reference 7 for more discussion of the possible biological
functions of such transitions.)

Microscopic conformation, mesoscopic concentration, and bistability. A sys-
tem with multiple steady states in coexistence under identical conditions is called
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multistable. The different steady states of the system are reached from different ini-
tial conditions. As discussed in Section 2.3, a chemical reaction system has a unique
NESS with a probability distribution. Each local maximum in the mesoscopic con-
centration distribution, however, corresponds to a macroscopic steady state. The term
bistability (see above) is used in this context. A mesoscopic system fluctuates between
the two local maxima. However, the same chemical reaction system with macroscopic
size remains in one of the local maxima because a transition between two maxima
takes an astronomical time.

Bistability cannot occur in a closed macroscopic–chemical reaction system. With
chemical detailed balance and assuming the law of mass action, one can show that a
closed macroscopic system has a unique equilibrium steady state. Correspondingly,
in a closed mesoscopic–chemical reaction system, the probability distribution of the
concentrations (molecular numbers) has a single maximum.

This conclusion comes as a surprise because microscopic systems with multimin-
ima energy landscapes are common. The best example is the multiple conformational
states of a protein (Figure 7a). However, there is an important distinction between
mesoscopic systems in terms of molecular concentrations (numbers) and microscopic
systems in terms of molecular conformation. To illustrate this, let us consider N copies
of a protein molecule with the conformational distribution given in Figure 7a in a
closed system. The equilibrium probability distribution for the number of molecules
in the A-state is a binomial distribution with a single maximum at Np A (Figure 7b).

X

Y

Conformation

P
ro

b
ab

ili
ty

Concentration

P
ro

b
ab

ili
ty

a b

Figure 7
The difference between a microscopic probability distribution for molecular conformations in
a closed system and a mesoscopic probability distribution for molecular concentrations in a
closed system. (a) The equilibrium probabilities for conformations X and Y are dictated by
their conformational energy (Boltzmann’s law). A local minimum in energy function
corresponds to a maximum in probability, and there can be many local energy minima. (b) The
equilibrium probability distribution for the concentrations of molecular species, however, can
only have a single maximum, corresponding to the unique macroscopic equilibrium
concentrations.

132 Qian

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

00
7.

58
:1

13
-1

42
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 C

al
if

or
ni

a 
In

st
itu

te
 o

f 
T

ec
hn

ol
og

y 
on

 0
5/

11
/1

0.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



ANRV308-PC58-05 ARI 21 February 2007 11:26

4. SPECIFICITY AMPLIFICATION AND ITS
THERMODYNAMIC LIMIT

In living cells, the specificity of biochemical recognition can be amplified and the
intrinsic noise from nonspecific interference can be reduced at the expense of cellular
free energy (6, 63, 64). This is the seminal idea in the theory of kinetic proofreading
(6, 65). Although the molecular mechanisms of proofreading have been extensively
elucidated in terms of the exonuclease activity of DNA polymerase (66) and for protein
synthesis in terms of ribosome structure and kinetics (67), the role of free energy in
biological error reduction (68) has not been as widely discussed.

Biological organisms, through evolution, have acquired a repertoire of mecha-
nisms to counteract stochasticity (69, 70), thus improving the accuracy of their infor-
mational processing. However, this strategy relies on the energy resource available to
the organism. In this section, I discuss open-system kinetic models that quantify the
relationships between the level of available free energy and error reduction (71, 72).

Specificity is one of the most important concepts in molecular biology. The molec-
ular basis of specificity is usually attributed to differences in affinity. In other words,
an enzyme recognizes its natural substrate with higher affinity because there is a
structural complementarity between the enzyme and its natural substrate.

However, this structural-based specificity is not everything. In the 1970s,
Hopfield (6) and Ninio (65) independently discovered that the specificity can be regu-
lated purely through chemical kinetic means without modifying molecular structures.
This kinetic-proofreading mechanism has been shown to be responsible for the high
fidelity in many important biological processes.

4.1. Kinetic Proofreading and Affinity Ratio

The theory of kinetic proofreading was developed to explain the high fidelity in
biosynthetic processes (6, 65). The idea and the mathematical model, however, have
much broader cellular applications and can be applied to other systems, such as
receptor-ligand interactions coupled with hydrolysis (Figure 8) (58).

The equilibrium between the empty receptor R and the activated com-
plex RL∗ is [RL∗]eq/[R]eq = ko

−3[L]/k3 = k−3/k3. We again use the parameter
γ = (k1k2k3)/(k−1k−2k−3) to represent the free energy from hydrolysis, �μDT =
kB T ln γ > 0.

To study specificity, we consider two ligands L and L′ at equal concentration. L
and L′ are structurally related, so they have the same k1, k2, k−2, and k−3. However,
their affinities with the receptor are different owing to

k′
−1

k−1
= k′

3

k3
= σ. (39)

If the receptor has a higher affinity for L′ than for L, then σ < 1. In a chemical
equilibrium (i.e., γ = 1), we can quantify the ratio of the two affinities:

Ar = [RL∗]/([R][L])
[RL′∗]/([R][L′])

= k−3/k3

k−3/k′
3

= σ. (40)
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k1
0

k3

k– 3
0

k– 2
0 k2

0

k–1

R + L

RL T

DRL*

Figure 8
A three-state kinetic model of receptor-ligand binding coupled with a hydrolysis reaction. The
biochemical literature often refers to RL∗ as an activated complex with crucial biological
activity. Rate constants with positive and negative subscripts are for clockwise and
counterclockwise directions, respectively. ko

1, ko
2, ko

−2, and ko
−3 are second-order rate constants.

k1 = ko
1[L], k2 = ko

2[T], k−2 = ko
−2[D], and k−3 = ko

−3[L] are pseudo-first-order rate constants.
Because the concentrations of T and D are not at equilibrium in living cells,
k1k2k3/(k−1k−2k−3) = γ > 1.

Specificity amplification:
specificity determined by
molecular structures and
equilibrium affinities can be
increased in a living cell

The affinity ratio Ar represents the relative probability of activation owing to non-
specific binding, and 1/Ar represents the specificity of ligand L′ with respect to L.
The smaller Ar is, the greater the specificity.

In living cells, [RL∗] and [R] are not at their equilibrium owing to their coupling to
the hydrolysis reaction in Figure 8 (RL+T ⇀↽ RL∗ + D). The affinity ratio therefore
depends on how much energy is available; in other words, Ar is a function of γ (72):

Ar (γ ) = σ
(k1k2 + k2k−3 + k−1k−3)

(
k2k−3 + σk−1k−3 + k1k2

γ

)
(

k2k−3 + k−1k−3 + k1k2
γ

)
(k1k2 + k2k−3 + σk−1k−3)

. (41)

We see that when γ = 1, Ar = σ . Given γ and σ , we can show that Equation 41 has
a minimum

Ar, min(γ ) = σ

(
1 + √

γ σ√
γ + √

σ

)2

, (42)

when

k−1 � k2, k1 � k−3, k1k2 > σk−1k−3, k3>k−2. (43)

Inequalities k−1 � k2 and k1 � k−3 imply that step 1 in Figure 8 is in rapid equilib-
rium for a maximal specificity.

Figure 9 shows Ar, min as function of γ as given by Equation 42. When γ goes
to infinity (i.e., there is a sufficient amount of energy available), Ar, min approaches
σ 2. This is the celebrated result of References 6 and 65. Equation 42 provides the
best scenario, under the constraint of finite γ and the kinetic scheme in Figure 8, for
specificity amplification, which can be defined as σ/Ar .

For kinetic schemes more complex than the one shown in Figure 8, we can
achieve greater specificity amplification (72). Kinetic proofreading is not just the
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Figure 9
The orange line is the
estimated absolute lower
bound, based on
thermodynamics, for the
affinity ratio Ar with given
energy γ . The blue line is
the minimal affinity ratio
for three-state Hopfield
models, according to
Equation 42.

mechanism for correcting errors in DNA replications and protein biosynthesis. It is
a chemical kinetic mechanism of regulating specificity. The energy expenditure is a
key ingredient of the mechanism. There is a unifying principle underlying the kinetic
proofreading and the PdPC discussed in Section 3.

4.2. Thermodynamic Limit on Specificity Amplification
with Finite Energy

Is it possible to obtain a lower bound for the affinity ratio with a given amount of
energy γ independent of any kinetic scheme? In other words, is there a thermody-
namic limit for specificity amplification irrespective of the detailed wiring diagram
(i.e., Figure 8)?

We can write the competition between L and L′ for R into a single biochemical
reaction:

L + RL′∗ ⇀↽ L′ + RL∗, (44)

which has an equilibrium constant σ . With equal amounts of L and L′, the free energy
difference between RL∗ and RL′∗, �μeq, is zero at equilibrium:

�μeq = −kB T ln σ + kB T ln
[RL∗]
[RL′∗]

= 0. (45)

In living cells, this reaction is coupled to an energy source with free energy kB T ln γ .
The free energies in a reaction loop, including source and dissipation, satisfy
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GTPase: guanosine
triphosphatase

GTPase timer: the
duration of a GTPase in its
GTP-bound, active state
used to time biochemical
events

Kirchhoff’s loop law (13, 73). Hence, the maximum contribution to the reaction,
assuming no waste of energy in the coupling, is

�μ = −kB T ln σ + kB T ln
[RL∗]
[RL′∗]

= −kB T ln γ. (46)

This yields
[RL∗]
[RL′∗]

= σ

γ
. (47)

The orange line in Figure 9 shows this absolute lower bound for the affinity ratio
irrespective of any kinetic models. Equation 47 was first discovered in Reference 71.
(For more discussion, see Reference 72.)

The above thermodynamic argument can be generalized. For example, if a proof-
reading process involves enzyme movement against a force, such as an RNA poly-
merase in a biophysical experiment (74), then the available energy to the proofreading
is less than γ . In this case, the theory predicts that the thermodynamic limit for affinity
ratio is σ

γ
ew/kB T , where w is the amount of mechanical work done against the force.

There is a trade-off between biochemical specificity and mechanical work.

5. KINETIC TIMING: MOLECULAR TIMER
AND ITS ACCURACY

Guanosine triphosphatase (GTPase), another key cellular signal-transduction module
(58), has a remarkably similar network structure to the PdPC. To see this, we can
compare Figures 3b,d. The biological function of a GTPase is to control biochemical
activities, again through switching, but also to time the activation of biological events,
such as the duration of signaling (75, 76).

The lifetime T of a protein conformational state determines the duration of an
activation process. For a single molecule, T is stochastic. In fact, if the biologically
active state is indeed a single conformational state, then the duration of the activation
is exponentially distributed: λe−λt , where 〈T 〉 = 1/λ is the mean time. An exponential
distribution has a relative variance of

Var[T ]
〈T 〉2

= 1. (48)

That is, the distribution is broad. More importantly, the distribution is monotonic,
and it does not peak at 〈T〉.

If the biologically active state consists of two conformational states (Figure 10),
then the probability distribution for the lifetime of B = B1 ∪ B2 has two exponential
terms:

fT(t) = aλ1e−λ1t + (1 − a)λ2e−λ2t . (49)

If the biochemical reactions are in a closed system that satisfies detailed balance, then
we can show that 0 ≤ a ≤ 1. That means the distribution is again monotonically
decreasing, and the relative variance is now greater than 1 (76a):

Var[T ]
〈T 〉2

= 2
aλ2

2 + (1 − a)λ2
1

(aλ2 + (1 − a)λ1)2 − 1 ≥ 1. (50)
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k2
k–1

q–

q +

B1

A C

B2

k2
k–1 k– 2k1

0  [GTP]

k– 3
0  [GDP]

k3

q–

q +

G1
T

G GD

G2
T

Figure 10
Kinetic schemes for a biomolecular conformation-based timer. (a) The biologically active state
of a signaling molecule is B, which consists of B1 and B2. The duration of the molecule in the
B state is directly related to the integrated activity of the molecule. In a closed system with
detailed balance, the probabilities of the molecule entering the B state through B1 and B2 are
proportional to k−1 Peq

B1
and k2 Peq

B2
, respectively. (b) A model of GTPase systems in a living cell.

G, GT
1,2, and GD are empty, GTP-bound, and GDP-bound GTPase, respectively. The

existence of two conformations for the GTP-bound state has been suggested for N-ras P21
GTPase (77, 78). We introduce pseudo-first-order rate constants k1 = ko

1[GTP ] and
k−3 = ko

−3[GDP ]. In the open system, the GTPase enters GT dominantly through GT
1 .

As a timer, this is even less accurate than a single exponential. This result is general:
In a closed system, any timer based on the lifetime of a group of conformational states
can be no more accurate than one based on a single state.

The positive a and (1 − a) in Equation 49 lead to a breakdown of causality. As an
example, observer John starts a timer following Equation 49 at time zero. John finds
a mean time of a/λ1 + (1 − a)/λ2. However, if observer Jean joins John at time τ > 0
and records the same timer but starting only at τ , Jean has a mean time of

ae−λ1τ /λ1 + (1 − a)e−λ2τ /λ2

ae−λ1τ + (1 − a)e−λ2τ
≥ a

λ1
+ 1 − a

λ2
. (51)

This paradox indicates that molecular timing based on conformational states cannot
be carried out without ambiguity in a closed system. In other words, if there is no
energy, there is no timer.

6. CONCLUDING REMARKS

Analyzing biochemical reaction systems (such as signal transduction, gene regulation,
and metabolic networks) in terms of energetics and thermodynamics is a natural
extension of physical chemistry. But what is the importance of such an endeavor
to biology? One of the central questions in cellular biology is how a tiny cell (a
mesoscopic collection of fluctuating molecules and noisy reactions driven by thermal
energy) can accomplish the precisely programmed instructions in its genes. The more
we understand biological functions in terms of their molecular processes, the more
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surprised we are by the seeming impossibility of such small chemical systems behaving
like macroscopic machines.

A cell is indeed a biochemical machine that exhibits complex temporal behavior,
but the temporal dynamics cannot be dominantly stochastic. Free energy inputs assure
that the dynamics of the biochemical reaction system is, as required by evolution,
not dictated by thermal noise. As discussed above, important biochemical reactions
inside living cells execute robust temporal dynamics, by carrying out a wide range
of functions, such as toggle switching through the PdPC, decision making through
specificity amplification, and counting time. All in all, information processing in
cellular biology requires free-energy expenditure for its accuracy. It is thus natural
that evolution has chosen the energy-rich phosphorylation reactions as the ubiquitous
mechanism for signal transduction inside cells.

SUMMARY POINTS

1. Far-from-equilibrium thermodynamics of open chemical systems is the
physiochemical foundation of the dynamics and functions of biochemical
processes inside living cells.

2. No matter how complex a chemical reaction system is, without free energy
input and dissipation, many cellular networks cannot function.

3. In biochemical reactions involved in signaling, high-grade chemical energy
is reduced to low-grade heat; the energy involved in processing information
must be explained in terms of entropy production.

4. Free energy derived from cycles of phosphorylation and dephosphorylation
of proteins can be used to improve specificity in biomolecular recognition
and robustness in cell development.

5. Evolution has chosen the energy-rich phosphorylation reactions as the ubiq-
uitous mechanism for signal transduction inside cells.

6. Free energy dissipation (i.e., negative entropy) makes the cell—a
mesoscopic–biochemical reaction system that consists of a collection of
thermally driven fluctuating macromolecules—a genetically programmed
chemical machine.
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